maxon

IDX

Communication Guide

idx.maxongroup.com

IDX Drives
Communication Guide
CCMC | Edition 2021-03 | DoclD rel9977

http://idx.maxongroup.com/

Table of Contents m axo n

TABLE OF CONTENTS

1 ABOUT THIS DOCUMENT 3
2 USB COMMUNICATION 7
2.1 IDXUSBCommand Reference. 7
2.2 Datalink Layer. i e e 12
2.3 Physical Layer. 20
3 CAN COMMUNICATION 21
3.1 GeneralInformation 21
3.2 CANOPEN BaSICS. . . .ttt e 23
3.3 CANopen Application Layer 25
3.4 Identifier Allocation Scheme e 34
3.5 LayerSetting Services (LSS)t e 35
4 ETHERCAT COMMUNICATION 41
4.1 Communication Specifications 42
4.2 EtherCAT State Machine (ESM) e 42
4.3 Integration of ESIFiles e 44
4.4 Error Code Definition. 44
5 GATEWAY COMMUNICATION (USB TO CAN) 45
6 COMMUNICATION ERROR CODE DEFINITION 47
LIST OF FIGURES 49
LIST OF TABLES 50
INDEX 51

READ THIS FIRST

These instructions are intended for qualified technical personnel. Prior commencing with any activities...
e you must carefully read and understand this manual and
« you must follow the instructions given therein.

IDX drives are considered as partly completed machinery according to EU Directive 2006/42/EC, Article 2, Clause (g) and are
intended to be incorporated into or assembled with other machinery or other partly completed machinery or equip-
ment.

Therefore, you must not put the device into service,...

» unless you have made completely sure that the other machinery fully complies with the EU directive’s requirements!

« unless the other machinery fulfills all relevant health and safety aspects!

» unless all respective interfaces have been established and fulfill the herein stated requirements!

IDX Communication Guide
A-2 CCMC | 2021-03 | rel9977

About this Document

maxon

1 ABOUT THIS DOCUMENT

The present document provides you with information on the IDX communication interfaces.

Find the latest edition of the present document as well as additional documentation and software for IDX
positioning controllers also on the Internet: =»http://idx.maxongroup.com.

1.1 Intended Purpose

The purpose of the present document is to familiarize you with the described equipment and the tasks on
safe and adequate installation and/or commissioning. Follow the described instructions ...

« to avoid dangerous situations,
¢ to keep installation and/or commissioning time at a minimum,
« toincrease reliability and service life of the described equipment.

The present document is part of a documentation set and contains performance data and specifications,
information on fulfilled standards, details on connections and pin assignment, and wiring examples. The
below overview shows the documentation hierarchy and the interrelationship of its individual parts:

Setup

| Feature Chart

Installation Configuration Programming Application
L User Manual EPOS Studio uommand Libraries LAppIication Notes
thup Release Notes memunication Guide
= =
JLW Version Readme Firmware Specification
= @
Figure 1-1 Documentation structure

IDX Communication Guide
CCMC | 2021-03 | rel9977

1-3

http://idx.maxongroup.com/

About this Document m axo n

1.2 Target Audience
The present document is intended for trained and skilled personnel. It conveys information on how to under-
stand and fulfill the respective work and duties.
The present document is a reference book. It does require particular knowledge and expertise specific to
the equipment described.
1.3 How to use
Take note of the following notations and codes which will be used throughout the document.
Notation Explanation
IDX stands for “IDX drive”
«Abcd» indicates a title or a name (such as of document, product, mode, etc.)
(n) refers to an item (such as part numbers, list items, etc.)
denotes “see”, “see also”, “take note of” or “go to”
Table 1-1 Notations used in this document
1.3.1 Trademarks and Brand Names
For easier legibility, registered brand names are listed below and will not be further tagged with their respec-
tive trademark. It must be understood that the brands (the below list is not necessarily concluding) are pro-
tected by copyright and/or other intellectual property rights even if their legal trademarks are omitted in the
later course of this document.
Brand Name Trademark Owner
A (o] CIONEEEL G © Adobe Systems Incorporated, USA-San Jose, CA
gﬁ;\l\gpen® © CiA CAN in Automation e.V, DE-Nuremberg
EtherCAT® © EtherCAT Technology Group, DE-Nuremberg, licensed by Beckhoff Automation
GmbH, DE-Verl
Table 1-2 Brand names and trademark owners
IDX Communication Guide
1-4

CCMC | 2021-03 | rel9977

m axon About this Document

1.4 Sources for additional Information
For further details and additional information, please refer to below listed sources:

Item Reference

[1] CAN in Automation's CAN Specification 2.0
www.can-cia.org

CiA 301 CANopen application layer and communication profile
Wwww.can-cia.org

(2

CiA 305 CANopen Layer setting services (LSS) and protocols
www.can-cia.org

(3]

CiA 306 CANopen Electronic device description
Www.can-cia.org

(4]
CiA 402 CANopen Drives and maotion control device profile

Www.can-cia.org

ETG.1000 EtherCAT Specification
www.ethercat.org

ETG.1020 EtherCAT Protocol Enhancements Specification
www.ethercat.org

ETG.2000 EtherCAT Slave Information (ESI) Specification
www.ethercat.org

IEC 61158-x-12: Industrial communication networks — Fieldbus specifications
(CPF 12)

[10] IEC 61800-7: Adjustable speed electrical power drives systems (Profile type 1)

EN 5325-4 Industrial communications subsystem based on ISO 11898 (CAN) for

[11] controller device interfaces Part 4: CANopen

USB Implementers Forum: Universal Serial Bus Revision 2.0 Specification:
www.usb.org/developers/docs/usb20_docs/

[12]

Table 1-3 Sources for additional information

15 Copyright

This document is protected by copyright. Any further use (including reproduction, translation, microfilming,
and other means of electronic data processing) without prior written approval is not permitted. The men-
tioned trademarks belong to their respective owners and are protected under intellectual property rights.
© 2021 maxon. All rights reserved. Subject to change without prior notice.

CCMC | IDX Communication Guide | Edition 2021-03 | DoclID rel9977

maxon motor ag
Briinigstrasse 220 +41 41 666 15 00
CH-6072 Sachseln WWW.maxongroup.com

IDX Communication Guide
CCMC | 2021-03 | rel9977 1-5

http://www.usb.org/developers/docs/usb20_docs/
http://www.maxongroup.com/
http://www.can-cia.org/
http://www.can-cia.org/
http://www.ethercat.org/
http://www.ethercat.org/
http://www.ethercat.org/
http://www.can-cia.org/
http://www.can-cia.org/
http://www.can-cia.org/

About this Document m axo n

eepage intentionally left blankee

IDX Communication Guide
1-6 CCMC | 2021-03 | rel9977

maxon

2.1

USB Communication
IDX USB Command Reference

USB COMMUNICATION

IDX USB Command Reference

2.1.1 Read Functions

2111 ReadObject
Read an object value from the Object Dictionary at the given Index and Subindex.

Request Frame

OpCode BYTE 0x60

Len BYTE 2 (number of words)
BYTE Node-ID

Parameters WORD Index of Object
BYTE Subindex of Object

Response Frame

OpCode BYTE 0x00

Len BYTE 4 (number of words)
DWORD =>“Communication Error Code Definition” on page 6-47

Parameters
BYTE [4] Data Bytes Read

21.1.2 InitiateSegmentedRead

Start reading an object value from the Object Dictionary at the given Index and Subindex.

Request Frame
OpCode BYTE 0x81
Len BYTE 2 (number of words)
BYTE Node-ID
Parameters WORD Index of Object
BYTE Subindex of Object
Response Frame
OpCode BYTE 0x00
Len BYTE 5...132 (number of words)
DWORD =>“Communication Error Code Definition” on page 6-47
DWORD Object Data Length (total number of bytes)
Parameters
BYTE Length (max. 255 bytes)
BYTE [0...254] Data Bytes Read

IDX Communication Guide
CCMC | 2021-03 | rel9977

2-7

USB Communication
IDX USB Command Reference m x n

2113 SegmentRead
Read a data segment of the object initiated with the command = «InitiateSegmentedRead».

Request Frame

OpCode BYTE 0x62

Len BYTE 1 (number of words)

R
BYTE Dummy Byte without meaning

Response Frame

OpCode BYTE 0x00
Len BYTE 3...131 (number of words)
DWORD =>“Communication Error Code Definition” on page 6-47
BYTE Length (max. 255 bytes)
[Bit 0] ControlByte Toggle Bit
Parameters BYTE [Bit 1] Last Data Segment
[Bit 2...7] Not used
BYTE [0...254] Data Bytes Read
BYTE Dummy Byte when length odd

IDX Communication Guide
2-8 CCMC | 2021-03 | rel9977

maxon

2.1.2 Write Functions

2121 WriteObject

USB Communication
IDX USB Command Reference

Write an object value to the Object Dictionary at the given Index and Subindex.

Request Frame

OpCode BYTE 0x68

Len BYTE 4 (number of words)
BYTE Node-ID
WORD Index of Object

Parameters - -
BYTE Subindex of Object
BYTE [4] Data Bytes to write

Response Frame

OpCode BYTE 0x00

Len BYTE 2 (number of words)

Parameters DWORD =>“Communication Error Code Definition” on page 6-47
2122 InitiateSegmentedWrite

Start writing an object value to the Object Dictionary at the given Index and Subindex. Use the command

= «SegmentWrite» to write the data.

Note that gateway communication is not supported.

Request Frame

OpCode BYTE 0x69
Len BYTE 4 (number of words)
BYTE Node-ID
WORD Index of Object
Parameters - -
BYTE Subindex of Object
DWORD Object Data Length (total number of bytes)

Response Frame

OpCode BYTE 0x00
Len BYTE 2 (number of words)
Parameters DWORD =>“Communication Error Code Definition” on page 6-47

IDX Communication Guide
CCMC | 2021-03 | rel9977

2-9

USB Communication
IDX USB Command Reference

2.1.23

SegmentWrite

maxon

Write a data segment to the object initiated with the command = «InitiateSegmentedWrite».

Note that gateway communication is not supported.

Request Frame

OpCode BYTE Ox6A
Len BYTE 1...129 (number of words)
BYTE Length (max. 255 bytes)
[Bit 0] ControlByte Toggle Bit
BYTE [Bit 1] Last Data Segment
Parameters [Bit 2...7] Not used

BYTE [0...254]

Data Bytes to write

BYTE

Dummy Byte when length odd

Response Frame

OpCode BYTE 0x00
Len BYTE 3 (number of words)
DWORD =>“Communication Error Code Definition” on page 6-47
Parameters BYTE Length written (max. 255 bytes)
[Bit 0] ControlByte Toggle Bit
BYTE [Bit1...7] Not used
2124 SendNMTService

Send a NMT service. For example, change the NMT state or reset the device.

Request Frame

OpCode BYTE 0x70
Len BYTE 2
WORD Node-ID
1 Start Remote Node
Parameters B 2 Stop Remote Node
WORD CmdSpecifier 128 Enter Pre-Operational
129 Reset Node
130 Reset Communication
Response Frame
OpCode BYTE 0x00
Len BYTE 2 (number of words)
Parameters DWORD =>“Communication Error Code Definition” on page 6-47

IDX Communication Guide
CCMC | 2021-03 | rel9977

maxon

213

2131

General CAN Commands

SendLSS
Send a LSS master message to the CAN bus.

USB Communication
IDX USB Command Reference

Request Frame

OpCode BYTE Ox7A

Len BYTE 4

Parameters BYTE[8] LSS master message

Response Frame

OpCode BYTE 0x00

Len BYTE 2 (number of words)

Parameters DWORD =>“Communication Error Code Definition” on page 6-47
2132 ReadlLSS

Read a LSS slave message from the CAN bus.

Note that a LSS slave message can be read only if a SendLSS command has been executed before.

Request Frame

OpCode BYTE 0x7B

Len BYTE 2

Parameters WORD Timeout [ms]

Response Frame

OpCode BYTE 0x00

Len BYTE 6 (number of words)

Parameters DWORD =>“Communication Error Code Definition” on page 6-47
BYTE[8] LSS slave message frame data

IDX Communication Guide
CCMC | 2021-03 | rel9977

2-11

USB Communication
Data Link Layer

2.2

Data Link Layer

221 Flow Control
The IDX always communicates as a slave.

maxon

A frame is only sent as an answer to a request. All commands send an answer. The master must always ini-
tiate communication by sending a packet structure.

The data flow while transmitting and receiving frames are as follows:

Client MgSéer S|'§3'<e
ExecuteCommand() :
>]
SendFrame() N '
4
T SRV ReceiveFrame() .. H
| | 5
Figure 2-2 USB communication — Commands
Master Slave
PC IDX
: SendByte(DLE') <
d
: SendByte('STX') X
P4
SendStuffedData(OpCode, Len, Data, Crc)
L_J rd
Figure 2-3 USB communication — Sending a data frame to IDX
Master Slave
PC IDX
E SendByte(DLE') !
L_l\
> SendByte('STE')
L_l\
, SendStuffedData(OpCode, Len, Data, Crc)
L_J\
Figure 2-4 USB communication — Receiving a response data frame from IDX

2-12

IDX Communication Guide
CCMC | 2021-03 | rel9977

maxon

USB Communication
Data Link Layer

2.2.2 Frame Structure

The data bytes are sequentially transmitted in frames. A frame composes of-...

« synchronization (and byte stuffing),

* header,

< variably long data field, and

« 16-bit long cyclic redundancy check (CRC) for verification of data integrity.

OpCode Len Parameters]
Command frame (8-bit) (8-bit) (Len * 16-bit)
\C/:VRogi (g?éﬂg';irgx for Header Data 1 Data 2 Data m CRC
(iittle endian) (16-bit) (16-bit) (16-bit) (16-bit) (16-bit)
Byte stream DLE STX Byte 1 Byte 2 Byte n-1 Byte n
(low byte first) (8-bit) (8-bit) (8-bit) (8-bit) (8-bit) (8-bit)
SYNC Byte-stuffed DATA

Figure 2-5

SYNC

HEADER

DATA

USB communication — Frame structure

The first two bytes are used for frame synchronization.
DLE Starting frame character “DLE” (Data Link Escape) = 0x90
STX Starting frame character “STX” (Start of Text) = 0x02

The header consists of 2 bytes. The first field determines the type of data frame to be sent or
received. The next field contains the length of the data fields.

Operation command to be sent to the slave. For details on the command set

OpCode =“IDX USB Command Reference” on page 2-7.
Len Represents the number of words (16-bit value) in the data fields [0...143].

The data fields contain the parameters of the message. The low byte of the word is
transmitted first.

Datali] The parameter word of the command. The low byte is transmitted first.

CRC 16-hit long cyclic redundancy check (CRC) for verification of data integrity.

Note
@ As a reaction to a bad OpCode or CRC value, the slave sends a frame containing the corresponding error

code.

For an example on composition and structure of IDX messages =»chapter “2.2.8 Example: Command
Instruction” on page 2-17.

IDX Communication Guide
CCMC | 2021-03 | rel9977

2-13

USB Communication
Data Link Layer m x n

2.2.3 Cyclic Redundancy Check (CRC)
CRC is used for verification of data integrity.

2231 CRC Calculation

Note
@ * The 16-bit CRC checksum uses the algorithm CRC-CCITT.

 For calculation, the 16-bit generator polynomial “x16+x12+x5+x0" is used.
* The CRC is calculated before data stuffing and synchronization.

* Add a CRC value of “0” (zero) for CRC calculation.

* The data frame bytes must be calculated as a word.

2232 CRC Algorithm

ArrayLength: Len + 2 WORD DataArray[ArrayLength]
Generator Polynom G(x): 10001000000100001 (= x16+x12+x5+x0)
DataArray|[0]: HighByte(Len) + LowByte(OpCode)
DataArray[1]: Data[0]

DataArray|[2]: Data[1]

DataArray[ArrayLength-1]: 0x0000 (CrcValue)

WORD CalcFieldCRC (WORD* pDataArray, WORD ArrayLength)
{

WORD shifter, c;

WORD carry;

WORD CRC = O0;

//Calculate pDataArray Word by Word
while (ArrayLength--)
{

shifter = 0x8000; //Initialize BitX to Bitl5
c = *pDataArray++; //Copy next DataWord to c
do
{
carry = CRC & 0x8000; //Check if Bitl5 of CRC is set
CRC <<= 1; //CRC = CRC * 2
if(c & shifter) CRC++; //CRC = CRC + 1, if BitX is set in c
if (carry) CRC "= 0x1021; //CRC = CRC XOR G(x), 1if carry is true
shifter >>= 1; //Set BitX to next lower Bit, shifter = shifter/2

} while (shifter);
}
return CRC

}
Figure 2-6 USB communication — CRC algorithm

IDX Communication Guide
2-14 CCMC | 2021-03 | rel9977

USB Communication
m x n Data Link Layer

2.2.4 Byte Stuffing

The sequence “DLE” and “STX” are reserved for frame start synchronization. If the character “DLE” appears
at a position between “OpCode” and “CRC” and is not a starting character, the byte must be doubled (byte
stuffing). Otherwise, the protocol begins to synchronize for a new frame. The character “STX" needs not to
be doubled.

EXAMPLES:

Sending Data 0x21, 0x90, 0x45

Stuffed Data 0x21, 0x90, 0x90, 0x45

Sending Data 0x21, 0x90, 0x02, 0x45

Stuffed Data 0x21, 0x90, 0x90, 0x02, 0x45
Sending Data 0x21, 0x90, 0x90, 0x45

Stuffed Data 0x21, 0x90, 0x90, 0x90, 0x90, 0x45
Important:

Byte stuffing is used for all bytes (CRC included) in the frame except the starting characters.

2.25 Transmission Byte Order
To send and receive a word (16-bit) via the serial port, the low byte will be transmitted first.

Multiple byte data (word = 2 bytes, long word = 4 bytes) are transmitted starting with the less significant byte
(LSB) first.

A word will be transmitted in this order: byte0O (LSB), bytel (MSB).
A long word will be transmitted in this order: byteO (LSB), bytel, byte2, byte3 (MSB).

2.2.6 Timeout Handling

The timeout is handled over a complete frame. Hence, the timeout is evaluated over the sent data frame,
the command processing procedure and the response data frame. For each frame (frames, data process-
ing), the timer is reset and timeout handling will recommence.

Object Index Subindex Default
USB Frame Timeout 0x2006 0x00 500 [ms]
Table 2-4 USB communication — Timeout handling
Note

To cover special requirements, the timeout may be changed by writing to the Object Dictionary!

IDX Communication Guide
CCMC | 2021-03 | rel9977 2-15

USB Communication
Data Link Layer

maxon

2.2.7 Slave State Machine

[inChar <

f

[inChar <

Waiting for "DLE"

Waiting for "STX"

Waiting for "OpCode" | = =
:_/\ [inChar = "STX"]

Waiting for "Len"

[inChar = "STX"]

[inChar = "STX"]

[inChar = "STX"]

[inChar = "DLE"]

Escape "OpCode"

>"DLE"] e

WL
ar = g

[inChar = "DLE"]

Escape "Len"

>"DLE"]

[(inChar <> "DLE")

- chal =
(Waiting for "Data" | = ° 1 Escape "Data"
=

[(inChar = "DLE") and (not DataReceived)]

[inChar = "DLE"]

nd (DataReceived)]
[(inChar = "DLE") and (DataReceived)]

[(inChar <> "DLE")

Sending "

(RARA

[outChar

Sendin

A

[outChar

il

[outChar

Waiting for "Crc"

Sending "DLE"

Sending "STX")

Sending "Data"

[inChar = "DLE"]

| = Escape "Crc"

nd (CrcReceived)]
[(inChar = "DLE") and (CrcReceived)]

’ R [outChar = "DLE"]
OpCode")
<> "DLE"]

[outChar = "DLE"]

g "Len" Stuffing "Len"

<> "DLE"]

[outChar = "DLE"]

Stuffing "Data"

<> 'DLE']

Sendin

[outChar = "DLE"]

g "Crc" Stuffing "Crc"

[(inChar = "DLE") and (not CrcReceived)]

Stuffing "OpCode"

Figure 2-7 USB communication — Slave State Machine

2-16

IDX Communication Guide
CCMC | 2021-03 | rel9977

USB Communication
m x n Data Link Layer

2.2.8 Example: Command Instruction

The following example demonstrated composition and structure of the IDX messages during transmission
and reception via USB.

The command sent to the IDX is “ReadObject”, it can be used to read an object with up to 4 bytes.
ReadObject “Home Position” (Index = 0x30B0, Subindex = 0x00) from Node-ID 1

OpCode Len Parameters
Command frame (%-bit) (8-bit) (Len * 16-bit])
Header Data 1 Data 2 Data m CRC
(16-bit) (16-bit) (16-bit) (16-bit) (16-bit)
Byte stream DLE STX Byte 1 Byte 2 Byte n-1 Byte n
(low byte first) (8-bit) (8-bit) (8-bit) (8-bit) (8-bit) (8-bit)
SYNC Byte-stuffed DATA !
Figure 2-8 USB communication — Command instruction (example)
A) SETUP
1) Setup the desired frame (for details =»chapter “2.1 IDX USB Command Reference” on page 2-7).
Request frame
OpCode BYTE Read object 0x60
Len BYTE Number of words 0x02
BYTE Node-ID 0x01
Parameters WORD Index of object 0x30BO
BYTE Subindex of object 0x00

B) CRC CALCULATION
For details =»chapter “2.2.3 Cyclic Redundancy Check (CRC)” on page 2-14):

2) Prepare the word DataArray for CRC calculation (little endian):

DataArray

DataArray[0] 0x0260

DataArray[1] 0xB001

DataArray[2] 0x0030

DataArray[3] 0x0000 | »use CRC value of “0” (zero)

Important:
@ » Make sure that the CRC is calculated correctly. If the CRC is not correct, the command will neither be

accepted nor processed.
* CRC calculation includes all bytes of the data frame except synchronization bytes and byte stuffing.
» The data frame bytes must be calculated as a word.
» For calculation, use a CRC value of “0” (zero).

IDX Communication Guide
CCMC | 2021-03 | rel9977 2-17

USB Communication
Data Link Layer

maxon

3) Calculate the CRC (use algorithm as to =»chapter “2.2.3.2 CRC Algorithm” on page 2-14):
ArrayLength = Len + 2
CrcValue = CalcFieldCRC(&DataArray, ArrayLength)
DataArray[ArrayLength-1] = CrcValue

4) Add the CRC value to the DataArray:

DataArray

DataArray[0] 0x0260

DataArray[1] 0xB001

DataArray[2] 0x0030

DataArray[3] 0x622E | —the calculated CRC value

C) COMPLETION
5) Pack the DataArray to a byte stream (low byte first).
6) Add sync bytes.
7) Add byte stuffing (=»chapter “2.2.4 Byte Stuffing” on page 2-15).

8) Transmit the stuffed byte stream (=»chapter “2.2.5 Transmission Byte Order” on page 2-15):
SendStuffedData(&DataArray)
Transmission order (low byte first):
0x90,0x02,0x60,0x02,0x01,0xB0,0x30,0x00,0x2E,0x62

D) WAIT FOR RECEIVE FRAME

9) The IDX will answer to the command “ReadObject” with an answer frame and the returned param-
eters in the data block as follows:
Reception order (low byte first):
0x90,0x02,0x00,0x04,0x00,0x00,0x00,0x00,0x01,0%x90,0x90,0x00,0x00,0x9A,0x5C

Important:
» Do not send any data before the receive frame or a timeout is present.
» IDX cannot process data simultaneously.

E) REMOVE BYTE STUFFING AND THE SYNCHRONIZATION ELEMENTS

10) Byte stream without stuffing and synchronization elements:
0x00,0x04,0x00,0x00,0x00,0x00,0x01,0x90,0x00,0x00,0x9A,0x5C

F) CRC CHECK
For details =»chapter “2.2.3 Cyclic Redundancy Check (CRC)” on page 2-14):

11) Prepare the word DataArray for CRC calculation (little endian):

DataArray

DataArray|[0] 0x0400
DataArray[1] 0x0000
DataArray[2] 0x0000
DataArray[3] 0x9001
DataArray[4] 0x0000
DataArray[5] Ox5C9A

2-18

IDX Communication Guide
CCMC | 2021-03 | rel9977

USB Communication
m x n Data Link Layer

12) Calculate the CRC (use algorithm as to =»chapter “2.2.3.2 CRC Algorithm” on page 2-14). Thereby,
valid value for CRC is “0” (zero):
ArrayLength= Len + 2
CrcValue = CalcFieldCRC(&DataArray, ArrayLength)
Valid = (0x0000 == CrcValue)

G) CHECK
13) Check the IDX receive frame.

Response frame

OpCode BYTE Read object 0x00

Len BYTE Number of words 0x04
BYTE Node-ID 0x01

Parameters DWORD Communication error 0x00000000 | —no error
DWORD Data bytes read 0x00009001 | =36’865 inc

Important:
« If the error code is unequal to “0” (zero), the command was not processed!

» Check =¥chapter “6 Communication Error Code Definition” on page 6-47 for error details.
» Fix the error before attempting to resend the data frame.

IDX Communication Guide
CCMC | 2021-03 | rel9977 2-19

USB Communication
Physical Layer m x n

2.3 Physical Layer

231 USB

ELECTRICAL STANDARD

The IDX's USB interface follows the «Universal Serial Bus Specification Revision 2.0». You may wish to
download the file from the Internet (for URL =»“Sources for additional Information” on page 1-5), full details
are described in chapter “7.3 Physical Layer”.

IDX Communication Guide
2-20 CCMC | 2021-03 | rel9977

CAN Communication
x General Information

3 CAN COMMUNICATION

3.1 General Information
maxon IDX drives’ CAN interface follows the CiA CANopen specifications...

« CiA 301 V4.2: CANopen application layer and communication profile (=[2])
corresponds with the international standard EN 5325-4; Industrial communications subsystem
based on ISO 11898 (CAN) (=[11])

¢ CiA 305 Vv3.0: CANopen Layer setting services (LSS) and protocols (=[3])
* CiA 306 V1.3: CANopen Electronic device description (=>[4])

¢ CiA 402 V4.0: CANopen drives and motion control device profile (=[5])
corresponds with international standard IEC 61800-7 Ed 2.0; Generic interface and use of profiles
for power drive systems — profile type 1(=»[10])

3.1.1 Documentation

For further information on CAN/CANopen as well as respective specifications listed references in =»chapter
“1.4 Sources for additional Information” on page 1-5.

w

.1.2 Notations, Abbreviations and Terms used

nnnnb Numbers followed by “b”. binary

nnnnh Numbers followed by “h”. hexadecimal

nnnn All other numbers. decimal

Table 3-5 CAN communication — Notations

CAN CAN Application Layer
CMS CAN Message Specification

Communication Object (CAN Message) — a unit of transportation in a CAN message

el network. Data must be sent across a network inside a COB.

COB Identifier — identifies a COB uniquely in a network and determines the priority

COB-ID of that COB in the MAC sublayer

Electronic Data Sheet — used by CAN network configuration tools, e.g. PLC's

EDS
system managers

Identifier — the name by which a CAN device is addressed

Layer setting services

Medium Access Control — one of the sublayers of the Data Link Layer in the CAN
Reference Model. Controls the medium permitted to send a message.

Object Dictionary — the full set of objects supported by the node. Represents the
interface between application and communication (=»term “Object” on page 3-22).

Continued on next page.

IDX Communication Guide
CCMC | 2021-03 | rel9977 3-21

CAN Communication
General Information x

Process Data Object — object for data exchange between several devices

Programmable Controller — can serve as a CAN Master for the IDX
Read Only
Read Write

Service Data Object — peer-to-peer communication with access to the device’s
Object Directory

WO Write Only

Table 3-6 CAN communication — Abbreviations

CAN Client
or
CAN Master

A host (typically a PC, PLC, or other control device) supervising the nodes of a
network

CAN Server
or A node in the CAN network that can provide service under the CAN Master’s control
CAN Slave

. A CAN message with meaningful functionality and/or data. Objects are referenced
Object . : . -
according to addresses in the Object Dictionary.
“received” data is being sent from the control equipment to the IDX
“transmitted” data is being sent from the IDX to the other equipment

Table 3-7 CAN communication — Terms

IDX Communication Guide
3-22 CCMC | 2021-03 | rel9977

CAN Communication

m axo n CANopen Basics

3.2 CANopen Basics
Subsequently described are the CANopen communication features most relevant to the maxon’s IDX posi-
tioning controllers. For more detailed information consult above mentioned CANopen documentation.

The CANopen communication concept can be described similar to the ISO Open Systems Interconnection
(OSI) Reference Model. CANopen represents a standardized application layer and communication profile.

Transmitting Receiving
Device Device
@@D\]@p@@ | Communication 3l @@NQp@ﬂ
Application Layer 7| Object (COB) Application Layer

CAN 3 3 CAN
Data Link Layer CAN Frame || CAN Frame Data Link Layer

CAN CAN_L CAN_L CAN
Physical Layer Physical Layer

N
Z N
N 4
Figure 3-9 CAN communication — Protocol layer interactions

3.2.1 Physical Layer

CANopen is a networking system based on the CAN serial bus. It assumes that the device’s hardware fea-
tures a CAN transceiver and a CAN controller as specified in ISO 11898. The physical medium is a differ-
ently driven 2-wire bus line with common return.

Node 1 Node 2

CAN_H

120 Q CAN Bus Line 120 Q
CAN_L

Figure 3-10 CAN communication — 1SO 11898 basic network setup

IDX Communication Guide
CCMC | 2021-03 | rel9977 3-23

CAN Communication
CANopen Basics m x n

3.2.2 Datalink Layer

The CAN data link layer is also standardized in ISO 11898. Its services are implemented in the Logical Link
Control (LLC) and Medium Access Control (MAC) sublayers of a CAN controller.

« The LLC provides acceptance filtering, overload notification and recovery management.

* The MAC is responsible for data encapsulation (decapsulation), frame coding (stuffing/destuffing),
medium access management, error detection, error signaling, acknowledgment, and serialization
(deserialization).

Continued on next page.

A Data Frame is produced by a CAN node when the node intends to transmit data or if this is requested by
another node. Within one frame, up to 8 byte data can be transported.

Bus (S) Arbitration Control Data CRC ACK g Inter-
Idle F Field Field Field Field Field E mission
Bit 1 12 or 32 6 0..8*8 16 2 7 3

Figure 3-11 CAN communication — CAN data frame

¢ The Data Frame begins with a dominant Start of Frame (SOF) bit for hard synchronization of all
nodes.

* The SOF bit is followed by the Arbitration Field reflecting content and priority of the message.

« The next field — the Control Field — specifies mainly the number of bytes of data contained in the
message.

¢ The Cyclic Redundancy Check (CRC) field is used to detect possible transmission errors. It con-
sists of a 15-bit CRC sequence completed by the recessive CRC delimiter bit.

« During the Acknowledgment (ACK) field, the transmitting node sends out a recessive bit. Any node
that has received an error-free frame acknowledges the correct reception of the frame by returning
a dominant bit.

e The recessive bits of the End of Frame (EOF) terminate the Data Frame. Between two frames, a
recessive 3-bit Intermission field must be present.

With IDX, only the Standard Frame Format is supported.

| sor [11-Bitidentifier | RTR | 1DE |ro[DLC // | crc | Ack | EoOF |

Arbitration Field Control Field Data Field

Figure 3-12 CAN communication — Standard frame format

e The Identifier's (COB-ID) length in the Standard Format is 11 bit.

¢ The Identifier is followed by the RTR (Remote Transmission Request) bit. In Data Frames, the RTR
bit must be dominant, within a Remote Frame, the RTR bit must be recessive.

« The Base ID is followed by the IDE (Identifier Extension) bit transmitted dominant in the Standard
Format (within the Control Field).

e The Control Field in Standard Format includes the Data Length Code (DLC), the IDE bit, which is
transmitted dominant and the reserved bit r0, also transmitted dominant.

« The reserved bits must be sent dominant, but receivers accept dominant and recessive bits in all
combinations.

IDX Communication Guide
3-24 CCMC | 2021-03 | rel9977

CAN Communication
m x n CANopen Application Layer

3.3 CANopen Application Layer

3.3.1 Object Dictionary

The most significant part of a CANopen device is the Object Dictionary. It is essentially a grouping of objects
accessible via the network in an ordered, predefined fashion. Each object within the dictionary is addressed
using a 16-bit index and a 8-bit subindex. The overall layout of the standard Object Dictionary conforms to
other industrial field bus concepts.

Index Variable accessed

0x0000 Reserved

0x0001...0x025F Data types (not supported on IDX)

0x0260...0x0FFF Reserved

0x1000...0x1FFF | Communication Profile Area (CiA 301)

0x2000...0x5FFF | Manufacturer-specific Profile Area (maxon)
0x6000...0x9FFF | Standardized profile area 1st...8th logical device
0xA000...0xAFFF | Standardized network variable area (not supported on IDX)

0xB000...0xBFFF | Standardized system variable area (not supported on IDX)
0xCO000...0xFFFF | Reserved (not supported on IDX)

Table 3-8 CAN communication — Object dictionary layout

A 16-bit index is used to address all entries within the Object Dictionary. In case of a simple variable, it ref-
erences the value of this variable directly. In case of records and arrays however, the index addresses the

entire data structure. The subindex permits individual elements of a data structure to be accessed via the
network.

« For single Object Dictionary entries (such as UNSIGNED8, BOOLEAN, INTEGER32, etc.), the
subindex value is always zero.

« For complex Object Dictionary entries (such as arrays or records with multiple data fields), the sub-
index references fields within a data structure pointed to by the main index.

An example: A receive PDO, the data structure at index 1400h defines the communication parameters for
that module. This structure contains fields or the COB-ID and the transmission type. The subindex concept
can be used to access these individual fields as shown below.

Index Subindex Variable accessed Data Type

1400h 0 Number of entries UNSIGNEDS

1400h 1 COB-ID used by RxPDO 1 UNSIGNED32

1400h 2 Transmission type RxPDO 1 UNSIGNEDS8
Table 3-9 CAN communication — Object dictionary entry

IDX Communication Guide
CCMC | 2021-03 | rel9977 3-25

CAN Communication
CANopen Application Layer m x n

3.3.2 Communication Objects

CANopen communication objects are described by the services and protocols. They are classified as fol-
lows:

¢ The real-time data transfer is performed by means of Process Data Objects.
« With Service Data Objects, read/write access to entries of a device Object Dictionary is provided.

« Special Function Objects provide application-specific network synchronization and emergency
messages.

* Network Management Objects provide services for network initialization, error control and device
status control.

Communication Objects

Process Data Objects (PDO)
Service Data Objects (SDO)
Special Function Objects Time Stamp Objects (not used on IDX)
Synchronization Objects (SYNC) Emergency Objects (EMCY)

NMT Message

Node Guarding Object

Network Management Objects

Table 3-10 CAN communication — Communication objects

3.3.3 Predefined Communication Objects

3331 PDO Object

PDO communication can be described by the producer/consumer model. Process data can be transmitted
from one device (producer) to one another device (consumer) or to numerous other devices (broadcasting).
PDOs are transmitted in a non-confirmed mode. The producer sends a Transmit PDO (TxPDO) with a spe-
cific identifier that corresponds to the identifier of the Receive PDO (RxPDO) of one or more consumers.

PDO Consumer PDO Consumer
PDO /N N
Vv
PDO Producer PDO Consumer

Figure 3-13 CAN communication — Process Data Object (PDO)

There are two PDO services:

¢ The Write PDO is mapped to a single CAN Data frame.

e The Read PDO is mapped to CAN Remote Frame, which will be responded by the corresponding
CAN Data Frame.

Read PDOs are optional and depend on the device capability. The complete data field of up to 8 byte may
contain process data. Number and length of a device’s PDOs are application-specific and must be specified
in the device profile.

IDX Communication Guide
3-26 CCMC | 2021-03 | rel9977

maxon

CAN Communication
CANopen Application Layer

The number of supported PDOs depends on the actually used CANopen device. Theoretically, up to 512
RxPDOs and 512 TxPDOs are possible in a CANopen network. Typically, most devices support 4 RxPDOs
and 4 TxPDOs. The actual number of available PDOs is indicated by the CANopen device's object dictio-
nary and described by its firmware specification (such as the separately available document =2»«IDX Firm-
ware Specification»).

The PDOs correspond to entries in the Object Dictionary and serve as an interface to objects linked to real
time process data of the master's application code. The application objects' data type and their mapping into
the master's PDOs must match with the slave's PDO mapping. The PDO data exchange parameters, PDO
structure, and mapped objects are defined in the object entries of 0x1400, 0x1600 (for RxPDO 1), and

0x1800, 0x1A00 (for TXPDO 1).

Producer Consumer(s)
Write PDO
o >
Request > A;())pg}(;%ttlé)n > Indication(s)
0<1<8byte
Read PDO
Indication €———& -==========mmmmmmmmoaa] Request(s
< CAN Remote Frame q (<)
. >
Response > A’)O%}Z?:tt?n > Confirmation(s)
0<1<8byte
Figure 3-14 CAN communication — PDO protocol

IDX Communication Guide
CCMC | 2021-03 | rel9977

3-27

CAN Communication
CANopen Application Layer m x n

The CANopen communication profile distinguishes three message triggering modes:

a) Event-driven
Message transmission is triggered by the occurrence of an object-specific event specified in the
device profile.

b) Polling by remote frames
The transmission of asynchronous PDOs may be initiated upon receipt of a remote request ini-
tiated by another device.

¢) Synchronized
Synchronous PDOs are triggered by the expiration of a specified transmission period synchro-
nized by the reception of the SYNC object.

Internal
Event -
7
a) Event-driven Producer > > Consumer(s)
>
i Remote Frame
b) Polling by Vi
Producer |\ \ > Consumer(s)
Remote Frames >
c) Synchronized Sy% >
(cyclic, acyclic) Producer N\ > Consumer(s)
yclic, acy >

Figure 3-15 CAN communication — PDO communication modes

IDX Communication Guide
3-28 CCMC | 2021-03 | rel9977

maxon

3.33.2 SDO Object

With Service Data Objects (SDOSs), the access to entries of a device Object Dictionary is provided. A SDO is
mapped to two CAN Data Frames with different identifiers, because communication is confirmed. By means
of a SDO, a peer-to-peer communication channel between two devices may be established. The owner of
the accessed Object Dictionary is the server of the SDO. A device may support more than one SDO, one
supported SDO is mandatory and the default case.

Peer-to-Peer Communication

SDO Client

/]

SDO 1

Node n-1

e

Node n

Figure 3-16

CAN communication — Service Data Object (SDO)

SDO Server

CAN Communication
CANopen Application Layer

Read and write access to the CANopen Object Dictionary is performed by SDOs. The Client/Server Com-
mand Specifier contains the following information:

¢ download/upload

* request/response

« segmented/expedited transfer

e number of data bytes

* end indicator

« alternating toggle bit for each subsequent segment

SDOs are described by the communication parameter. The default Server SDO (S_SDO) is defined in the
entry “1200h”. In a CANopen network, up to 256 SDO channels requiring two CAN identifiers each may be

used.
Byte 0 1...3: Multiplexor 4...7: Data
Command 16-Bit 8-Bit 1...4 Byte
Specifier Index Subindex Parameter Data
A/ l/ \I
N |~ N
Index | Subindex | Description | Value
Object Dictionary
Figure 3-17 CAN communication — Object dictionary access

IDX Communication Guide
CCMC | 2021-03 | rel9977

3-29

CAN Communication
CANopen Application Layer m x n

3.3.33 SYNC Object
The SYNC producer provides the synchronization signal for the SYNC consumer.

As the SYNC consumers receive the signal, they will commence carrying out their synchronous tasks. In
general, fixing of the transmission time of synchronous PDO messages coupled with the periodicity of the
SYNC Object’s transmission guarantees that sensors may arrange sampling of process variables and that
actuators may apply their actuation in a coordinated manner. The identifier of the SYNC Object is available
at index “1005h”.

SYNC Producer

WV A4 \L

Non-SYNC
Consumer

SYNC Consumer SYNC Consumer SYNC Consumer

Figure 3-18 CAN communication — Synchronization object (SYNC)

Synchronous transmission of a PDO means that the transmission is fixed in time with respect to the trans-
mission of the SYNC Object. The synchronous PDO is transmitted within a given time window “synchronous
window length” with respect to the SYNC transmission and, at the most, once for every period of the SYNC.
The time period between SYNC objects is specified by the parameter “communication cycle period”.

CANopen distinguishes the following transmission modes:
¢ synchronous transmission
e asynchronous transmission

Synchronous PDOs are transmitted within the synchronous window after the SYNC object. The priority of
synchronous PDOs is higher than the priority of asynchronous PDOs.

Asynchronous PDOs and SDOs can be transmitted at every time with respect to their priority. Hence, they
may also be transmitted within the synchronous window.

Legend
/]\ synchronous PDO /.\ asynchronous PDO

SYNC SYNC SYNC SYNC SYNC SYNC
N N N N N N
N N N N N N
AN A

N T
> Time

Figure 3-19 CAN communication — Synchronous PDO

IDX Communication Guide
3-30 CCMC | 2021-03 | rel9977

CAN Communication
m x n CANopen Application Layer

3.3.34 EMCY Object

Emergency messages are triggered by the occurrence of a device internal fatal error. They are transmitted
by the concerned device to the other devices with high priority, thus making them suitable for interrupt type
error alerts.

An Emergency Telegram may be sent only once per “error event”, i.e. the emergency messages must not
be repeated. No further emergency message shall be transmitted as long as no new errors occur on a
CANopen device. The error register as well as additional, device-specific information are specified in the
device profiles by means of emergency error codes defined as to CANopen Communication Profile.

Emergency
Consumer

EMCY o e EMCY

Emergency Emergency Emergency Emergency
Producer 1 Producer 2 Producer 3 Producer 4

Figure 3-20 CAN communication — Emergency service (EMCY)

3.3.35 NMT Services

The CANopen network management is node-oriented and follows a master/slave structure. It requires one
device in the network that fulfils the function of the NMT Master. The other nodes are NMT Slaves.

Network management provides the following functionality groups:

* Module Control Services for initialization of NMT Slaves that want to take part in the distributed
application.

« Error Control Services for supervision of nodes’ and network’s communication status.
¢ Configuration Control Services for up/downloading of configuration data from/to a network module.

A NMT Slave represents that part of a node, which is responsible for the node’s NMT functionality. It is
uniquely identified by its module ID.

NMT Master

NMT

100 nw |
4 A4 \l/

NMT Slave NMT Slave NMT Slave NMT Slave

Figure 3-21 CAN communication — Network management (NMT)

The CANopen NMT Slave devices implement a state machine that automatically brings every device to
«Pre-Operational» state, once powered and initialized.

In «Pre-Operational» state, the node may be configured and parameterized via SDO (e.g. using a configu-
ration tool), PDO communication is not permitted. The NMT Master may switch from «Pre-Operational» to
«Operational», and vice versa.

In «Operational» state, PDO transfer is permitted. By switching a device into «Stopped» state it will be
forced to stop PDO and SDO communication. Furthermore, «Operational» can be used to achieve certain
application behavior. The behavior's definition is part of the device profile’s scope. In «Operational», all
communication objects are active. Object Dictionary access via SDO is possible. However, implementation

IDX Communication Guide
CCMC | 2021-03 | rel9977 3-31

CAN Communication
CANopen Application Layer m x n

aspects or the application state machine may require to switching off or to read only certain application
objects while being operational (e.g. an object may contain the application program, which cannot be
changed during execution).

Initialization

©

Va4
N

Pre-Operational }

23 Stopped
A\ 4 45
Operational |, |

~

Figure 3-22 CAN communication — NMT slave states

CANopen Network Management provides the following services, which can be distinguished by the Com-
mand Specifier (CS).

Service Transi | NMT State after | Remote . .
: Functionality
[a] -tion Command [c]
—[b] 0 Pre-Operational | FALSE | Communication:
Ent Service Data Objects (SDO) Protocol
nter

3,6 Pre-Operational | FALSE |°® Emergency Objects
* Network Management (NMT) Protocol

Calculates SDO COB-IDs.

Setup Dynamic PDO-Mapping and calculates PDO COB-IDs.
Reset 189 Initialization FALSE Communication:

Communication T (Pre-Operational) « While initialization is active, no communication is supported.
< Upon completion, a boot-up message will be sent to the CAN

Bus.

Pre-Operational

Generates a general reset of the IDX software having the same
effect as turning off and on the supply voltage. Not saved
Initialization parameters will be overwritten with the values that have been
Reset Node 1,89 (Pre-Operational) FALSE saved in the device's persistent memory (e.g. Flash, EEPROM) by
processing the «Store parameters» function of object 0x1010

before.

Continued on next page.

IDX Communication Guide
3-32 CCMC | 2021-03 | rel9977

CAN Communication
m x n CANopen Application Layer

[a]

Service Transi | NMT State after | Remote

-tion Command [] Functionality

Start Remote Node | 2, 5 Operational TRUE * Process Data Objects (PDO) Protocol

Communication:
« Service Data Objects (SDO) Protocol

« Emergency Objects
* Network Management (NMT) Protocol

Stop Remote Node | 4,7 Stopped FALSE

Communication:

* Network Management (NMT) Protocol
« Layer setting services (LSS)

« Lifeguarding (Heartbeating)

[a]
[b]
[c]

The command may be sent with Network Management (NMT) protocol.
The IDX automatically generates the transition after initialization is completed. A Boot-Up message is being sent.
Remote flag Bit 9 of the Statusword.

Table 3-11 CAN communication — NMT slave (commands, transitions, and states)

The communication object possesses the identifier (=0) and consists of two bytes. The Node-ID defines the

destination of the message. If zero, the protocol addresses all NMT Slaves.

Transitions (Node Start / Stop / State)

NMT Master NMT Slave(s)
Byte 0 Byte 1
>
Request CS Node-ID > Indication(s)
COD-ID =0
Figure 3-23 CAN communication — NMT object

CS Node-ID . .
Protocol COB-ID (Byte 0) (Byte 1) Functionality
0 0x80 0 (all) All CANopen nodes (IDX devices) will enter NMT State «Pre-
Enter Operational».
Pre-Operational The CANopen node (IDX device) with Node-ID “n” will enter NMT
0 0x80 n .
State «Pre-Operational».
Reset 0 0x82 0 (all) All CANopen nodes (IDX devices) will reset the communication.
ese
Communication 0 Ox82 n The CANopgn node (IDX device) with Node-ID “n” will reset the
communication.
0x81 0 (all) All CANopen nodes (IDX devices) will reset.
Reset Node - - -
0x81 n The CANopen node (IDX device) with Node-ID “n” will reset.
0 OXO1 0 (all) All CANQpen nodes (IDX devices) will enter NMT State
Start Remote «Operational».
Node The CANopen node (IDX device) with Node-ID “n” will enter NMT
0 0x01 n :
State «Operational».
0 0x02 0 (all) All CANopen nodes (IDX devices) will enter NMT State «Stopped».
Stop Remote The CAN de (IDX devi ith Node-ID “n” will enter NMT
Node 0 0X02 n e open node (evice) wi ode-ID “n” will enter
State «Stopped».
Table 3-12 CAN communication — NMT protocols

IDX Communication Guide
CCMC | 2021-03 | rel9977

3-33

CAN Communication
Identifier Allocation Scheme x

34 Identifier Allocation Scheme

The default ID allocation scheme consists of a functional part (Function Code) and a Module ID, which
allows distinguishing between devices. The Module ID is assigned by DIP switches and a SDO Object.

Bit 10 9 10
coBidentifier [1 [2[3[4a[1[2][3][a][s]6]7

Function Code Module ID

Figure 3-24 CAN communication — Default identifier allocation scheme

This ID allocation scheme allows peer-to-peer communication between a single master device and up to
127 slave devices. It also supports broadcasting of non-confirmed NMT Services, SYNC and Node Guard-

ing.
The predefined master/slave connection set supports...
¢ one emergency object,
e one SDO,
« four Receive PDOs and three Transmit PDOs and the
¢ node guarding object.

. Function Code . Communication

Object (binary) Resulting COB-ID Parameter at
Index

NMT 0000 0 -

SYNC 0001 128 (0080h) 1005h

EMERGENCY 129...255 (0081h-00FFh) 1014h

PDO1 (tx) 0011 385...511 (0181h-01FFh) 1800h

PDOL1 (rx) 0100 513...639 (0201h-027Fh) 1400h

PDO2 (tx) 0101 641...8767 (0281h-02FFh) 1801h

PDO2 (rx) 0110 769...895 (0301h-037Fh) 1401h

PDO3 (tx) 0111 897...1023 (0381h-03FFh) 1802h

PDO3 (rx) 1000 1025...1151 (0401h-047Fh) 1402h

PDO4 (tx) 1001 1153...1279 (0481h-04FFh) 1803h

PDO4 (rx) 1010 1281...1407 (0501h-057Fh) 1403h

SDO1 (tx) 1011 1409...1535 (0581h-05FFh) 1200h

SDOL1 (rx) 1100 1537...1663 (0601h-067Fh) 1200h

Table 3-13 CAN communication — Objects of the default connection set

IDX Communication Guide
3-34 CCMC | 2021-03 | rel9977

CAN Communication
m x n Layer Setting Services (LSS)

3.5 Layer Setting Services (LSS)

By using layer setting services and protocols, a LSS Slave may be configured via CAN network without
using DIP switches for setting the Node-ID and bit timing parameters.

The CANopen device that can configure other devices via CANopen network is called «LSS Master». There
must be only one (active) LSS Master in a network. The CANopen device that will be configured by the LSS
Master via CANopen network is called «LSS Slave».

An LSS Slave can be identified by its worldwide (at least network-wide) unique LSS address. The LSS
address consists of the sub objects «Vendor ID», «Product code», «Revision numbers», and «Serial num-
ber» of the CANopen «Identity object» 0x1018 (=»IDX Firmware Specification). In the network, there must
not be other LSS Slaves possessing the same LSS address.

With this unique LSS address an individual CANopen device can be allocated within the network. The
Node-ID is valid if it is in the range of 0x01...0x7F, value OXFF identifies not configured CANopen devices.

Communication between LSS Master and LSS Slaves is accomplished by LSS protocols which use only
two COB-IDs:

e LSS master message from LSS Master to LSS Slaves (COB-ID 0x7E5)
e LSS slave message from the LSS Slaves to LSS Master (COB-ID 0x7E4).

Layer Setting Services are only accessible in NMT slave state «Stopped». To enter Stopped state, «Stop
remote node» (=“NMT Services” on page 3-31) is used.

351 Overview

The table below represents an overview on the LSS commands including details on whether they may used
in states «Waiting» and «Configuration». To change the LSS state, the LSS commands =»Switch State
Global or =»Switch State Selective may be used.

Comr_n_and LSS Command LSS_S_tate LS_S Stat_e
Specifier Waiting Configuration
0x04 =>»Switch State Global yes yes
0x40...0x43 =>Switch State Selective yes no
0x11 =>Configure «Node-ID» no yes
0x13 =>»Configure Bit Timing Parameters no yes
0x15 =>Activate Bit Timing Parameters no yes
0x17 =>»Store Configuration Protocol no yes
Ox5A =>Inquire Identity «Vendor ID» no yes
0x5B =>Inquire Identity «Product code» no yes
0x5C =>Inquire Identity «Revision number» no yes
0x5D = Inquire Identity «Serial number» no yes
Ox5E =>Inquire Identity «<Node-ID» no yes
0x46...0x4B | =»Identify Remote Slave yes yes
ox4C =>Identify non-configured Remote Slave yes yes
Table 3-14 LSS commands — Overview

IDX Communication Guide
CCMC | 2021-03 | rel9977 3-35

CAN Communication
Layer Setting Services (LSS) m x n

3.5.2 LSS Commands

3521 Switch State Global

Changes the state of all connected LSS Slaves to «Configuration» or back to «Waiting». Thereby, particular
LSS commands are not permitted (= Table 3-14).

cs 0x04 LSS command specifier 4 or switch state global
mode 0 switch to LSS state waiting
1 switch to LSS state configuration
LSS Master LSS Slave
CAN ID = 0x7E5
1 T] 1 1
E— 0)(284 mode reserved E—

1 1 1 1 1

Figure 3-25 LSS — Switch state global

35.2.2 Switch State Selective
Changes the state of one LSS Slave from «Waiting» to «Configuration».
The following LSS command specifiers are used:
* 0x40 to submit the Vendor ID
* 0x41 to submit the Product code
* 0x42 to submit the Revision number
* 0x43 to submit the Serial number («ldentity object» 0x1018; =»IDX Firmware Specification)

Then, the single addressed LSS Slave changes to configuration state and answers by sending a command
specifier 0x44 response.

LSS Master LSS Slave
CAN ID = 0x7E5

cs T T 1 1
0x40 Vend|or ID . IreservedI

CAN ID = 0x7E5

1
0321 Produc':t code . IreservedI

CAN ID = 0x7E5

1
cs o
0x42 Revision number reserved
1 1 1 1

CAN ID = 0x7E5

cs
0x43

1 1 1
Serial number reserved
1 1 1

CAN ID = 0x7E4

) 1 1 1 1 1
reserved
1 1

F 111
111

cs
0x44

Figure 3-26 LSS — Switch state selective

IDX Communication Guide
3-36 CCMC | 2021-03 | rel9977

CAN Communication
m x n Layer Setting Services (LSS)

3523 Configure «Node-ID»
Configures the Node-ID (of value 1...127).
The LSS Master must determine the LSS Slave’s Node-ID in LSS configuration state. The LSS Master is

responsible to switch a single (only one!) LSS Slave into LSS state «Configuration» (=»Switch State Selec-
tive) before requesting this service.

cs 0x11 LSS Slave answers with error code and specific error
error code 0 protocol successfully completed
1 Node-ID out of value range

specific error always 0

LSS Master LSS Slave
CAN ID = 0x7E5
] T 1 1 L]
E— 02?1 Node-ID reserved E—
1 1 1 1 1
CAN ID = 0x7E4
cs error | specific : ! g !
| oxi code | error . Ireservedl . e

Figure 3-27 LSS — Configure «Node-ID»

3524 Configure Bit Timing Parameters

By means of the service configure bit timing parameters, the LSS Master must configure new bit timing. The
new bit timing will be active not before receiving =»Store Configuration Protocol or =»Activate Bit Timing
Parameters.

table selector always 0

table index CAN bhit rate codes

0 protocol successfully completed
error code o

1 bit timing not supported

specific error always 0

LSS Master LSS Slave
CAN ID = 0x7E5
S cs table | table y 7 T T
0x13 |selector| index , Jesenved : —_—>
CAN ID = 0x7E4
—— cs error | specific ! y T T
0x13 code error , IreservedI | —

Figure 3-28 LSS - Configure bit timing parameters

IDX Communication Guide
CCMC | 2021-03 | rel9977 3-37

CAN Communication
Layer Setting Services (LSS) m x n

3.5.25 Activate Bit Timing Parameters
Activates the bit timing parameters selected with =»Configure Bit Timing Parameters.

The duration [ms] of the two periods time to wait until the bit timing parameters switch is
switch delay done (first period) and before transmitting any CAN message with the new bit timing
parameters after performing the switch (second period).

Upon receiving an activate bit timing command, the LSS Slave stops communication on old (actual) bit rate.
After the first switch delay, communication is switched to new bit rate, after a second switch delay, the LSS
Slave is permitted to communicate with new bit rate.

LSS Master LSS Slave
CAN ID = 0x7E5

L
cs)
E— switch dela
0x15 Wil e,

T] 1
reserved
1 1

Figure 3-29 LSS — Activate bit timing parameters

Activate bit timing command

Communication old bit rate _ ,

e
E BN -

', switch delay 1 \; , switch delay 2 !
N VA 7.

Communication new bit rate

Figure 3-30 LSS — Switch delay

3.5.2.6 Store Configuration Protocol
Stores the parameters «Node-ID», «CAN bit rate», and «RS232 bit rate» in a non-volatile memory.

0 protocol successfully completed
error code 1 store configuration is not supported
2 storage media access error

specific error always 0

LSS Master LSS Slave
CAN ID = 0x7E5
T T T T I :
> 05?7 reserved _
1 1 1 L . 1
CAN ID = 0x7E4
—— cs error | specific ! T T T
0x17 | code %rror , Ireserved 1) —

Figure 3-31 LSS — Store configuration protocol

3.5.2.7 Inquire Identity «Vendor ID»
Reads the «Vendor ID» of a LSS Slave («ldentity object» 0x1018; =»IDX Firmware Specification).

LSS Master LSS Slave
CAN ID = 0x7E5
1] T] 1]
E— 0;; A reserved E—
1 1 1 1 1 1
CAN ID = 0x7E4
1 1) I]
S Ogg A Vendor ID reserved Y
1 1 1 1 1

Figure 3-32 LSS - Inquire identity «Vendor ID»

IDX Communication Guide
3-38 CCMC | 2021-03 | rel9977

CAN Communication
m x n Layer Setting Services (LSS)

3.5.2.8 Inquire ldentity «Product code»
Reads the «Product code» of a LSS Slave («ldentity object» 0x1018; =»IDX Firmware Specification).

LSS Master LSS Slave
CAN ID = 0x7E5
E— 0;(:;8 : : :reserved: : : _—
CAN ID = 0x7E4
S Ong : Produc::t code : :reserved: Y

Figure 3-33 LSS — Inquire identity «Product code»

3.5.2.9 Inquire Identity «Revision number»
Reads the «Revision number» of a LSS Slave («Identity object» 0x1018; =»IDX Firmware Specification).

LSS Master LSS Slave
CAN ID = 0x7E5
E— O;(:;C : : :reserved: : : _—
CAN ID = 0x7E4
S 0)((:550 : Revision: number : :reserved: —

Figure 3-34 LSS - Inquire identity «Revision number»

3.5.2.10 Inquire Identity «Serial number»
Reads the «Serial number» of a LSS Slave («ldentity object» 0x1018; =»IDX Firmware Specification).

LSS Master LSS Slave
CAN ID = 0x7E5
1] 1 1 1 L]
E— O;(:ED reserved E—
1 1 1 1 1 1
CAN ID = 0x7E4
1 1) I]
S 0>(<:SSD Serial number reserved Y
1 1 1 1 1

Figure 3-35 LSS - Inquire identity «Serial number»

3.5.2.11 Inquire Identity «Node-ID»
Reads the «Node-ID» of a LSS Slave («ldentity object» 0x1018; =»IDX Firmware Specification).

LSS Master LSS Slave
CAN ID = 0x7E5
1] 1 1 1 L]
E— Ong reserved E—
1 1 1 1 1 1
CAN ID = 0x7E4
1) 1 I]
S O)?;E Node-ID reserved Y
1 1 1 1 1

Figure 3-36 LSS - Inquire identity «<Node-ID»

IDX Communication Guide
CCMC | 2021-03 | rel9977 3-39

CAN Communication
Layer Setting Services (LSS) m x n

3.5.2.12 Identify Remote Slave

Detects the LSS Slaves in the CAN network. Thereby, the LSS Master sends an identify remote slave
request with a single «Vendor ID», a single «Product code», and a span of «Revision numbers» and «Serial
numbers» determined by a low and a high number to the LSS Slaves. All LSS Slaves which meet this LSS
address range (inclusive boundaries) answer by a identify slave response (cs = Ox4F).

Along with this protocol, a binary network search can be implemented for the LSS Master. This method sets
the LSS address range to the full address area first, then requests the identify remote slave. The range
(which comprises one or more responded LSS Slaves) will be split in two sub-areas. The request to the sub-
areas will be repeated until each LSS Slave has been identified («Identity object» 0x1018; =»IDX Firmware
Specification).

LSS Master LSS Slave
CAN ID = 0x7E5

T 1 1
Vendor ID reserved
1 1 1

cs
0x46

CAN ID = 0x7E5

1
0327 Produc':t code . IreservedI

CAN ID = 0x7E5

] | | 1 |

cs ot
Revision number low reserved
0x48 1 1 1 1 1

CAN ID = 0x7E5

°S Revision numBer b ' d
evision number hi reserve
0x49]] i]]

CAN ID = 0x7E5

1 1
cs .
Serial number low reserved
Ox4A . . . N

CAN ID = 0x7E5

cs) 1 1 1 1
Serial ber high ed
0x4B erial numberhigh' Jeseneds

CAN ID = 0x7E4

cs
Ox4F . ; lreserved

LI A A A A A
Ml 141

Figure 3-37 LSS - Identify remote slave

3.5.2.13 Identify non-configured Remote Slave

Allows the LSS Master to detect the presence of any non-configured device in the network. All LSS Slaves
without a configured Node-ID (OxFF) will answer with a command specifier 0x50 response.

LSS Master LSS Slave
CAN ID = 0x7E5
L L] T 1 1 1
E— szc reserved E—
1 1 1 1 1 1
CAN ID = 0x7E4
H cs] 1 1 | I 1 H
%% 0x50 , . lreservedI .) %H
Figure 3-38 LSS - Identify non-configured remote slave

IDX Communication Guide
3-40 CCMC | 2021-03 | rel9977

m axo n EtherCAT Communication

4 ETHERCAT COMMUNICATION

@ Only available for «IDX EtherCAT».

« ETG.1000 V1.0.4: EtherCAT Specification (=»[6])
corresponds with the international standard IEC 61158-x-12 Industrial communication networks —
Fieldbus specifications (CPF 12: EtherCAT) (=»[9])

« ETG.1020 V1.2.0: EtherCAT Protocol Enhancements Specification (=»[7])
¢ ETG.2000 V1.0.9: EtherCAT Slave Information (ESI) Specification (=»[8])

e CiA 402 V4.0: CANopen Drives and motion control device profile (=[5])
corresponds with international standard IEC 61800-7 Ed 2.0; Generic interface and use of profiles
for power drive systems — profile type 1 (=[10])

Reference
You may access all relevant data and the free-for-download documentation from the EtherCAT website at

=¥http://ethercat.org/. Navigate to the downloads section and search for the document “EtherCAT Technol-
ogy Introduction”.

The document “EtherCAT _Introduction_xxxx.pdf”’ will serve well as an introduction to EtherCAT and does
include information on the technology, implementation, and possible applications.

For IDX firmware and hardware, consult maxon's comprehensive documentation set available at
=>http://idx.maxongroup.com. Among others, you will find the following documents:

IDX FIRMWARE SPECIFICATION
e Operating modes
e Communication and error handling
¢ Object dictionary
e efc.

IDX USER MANUAL
» Technical data
¢ Wiring diagrams and connection overview
* etc

IDX APPLICATION NOTES
¢ EtherCAT integration
e etc

IDX Communication Guide
CCMC | 2021-03 | rel9977 4-41

http://ethercat.org/
http://ethercat.org/
http://idx.maxongroup.com/

EtherCAT Communication
Communication Specifications x

4.1 Communication Specifications
Topic Description
Physical layer IEEE 802.3 100 Base T (100 Mbit/s, full duplex)

X14 (RJ45): EtherCAT Signal IN
X15 (RJ45): EtherCAT Signal OUT

SMO: Mailbox output
SM1: Mailbox input

Fieldbus connection

SyncManager SM2: Process data outputs
SM3: Process data inputs
FMMUO: Mapped to process data output (RxPDO) area
FMMU FMMU1: Mapped to process data input (TxPDO) area
FMMUZ2: Mapped to mailbox status
Process data Variable PDO mapping
Mailbox (CoE) SDO Request, SDO Response, SDO Complete Access
Synchronization SM-synchron, DC-synchron

NET status (green LED / red LED)

LED indicators NET port activity (green LED)

Table 4-15 EtherCAT communication — Communication specifications

4.2 EtherCAT State Machine (ESM)

The EtherCAT State Machine coordinates both Master and Slave during startup and operation. Their inter-
action (Master - Slave) results in changes of states being related to writes to the Application Layer Control-
word: AL Ctrl (0x0120).

Upon initialization of Data Layer and Application Layer, the ESM enters “Init” state which defines the Appli-
cation Layer's root of the communication relationship between Master and Slave. In the Application Layer,
no direct communication between Master and Slave is possible. The Master uses “Init” state...

* toinitialize a configuration register set and
« to configure the Sync Manager.

Operation of the connected IDX (the Slave) requires its prior initialization by the Master via the ESM. Within
the ESM, transitions between certain states must follow a given scheme and will be initiated by the Master.
The Slave itself must not execute any transition.

For an overview of the EtherCAT State Machine =»Figure 4-39, for further descriptions =»as from
Table 4-16.

B): @)

(O1) (PS) (SP)

(Sh Bootstrap (optional)
A4

(OP) Safe-Operational
N

(SO) (0S)
N/

Operational

Figure 4-39 EtherCAT communication — ESM scheme

Pre-Operational

IDX Communication Guide
4-42 CCMC | 2021-03 | rel9977

maxon

EtherCAT Communication
EtherCAT State Machine (ESM)

Condition Description
* IDXis ON
Power ON « IDX autonomously initializes and switches to state “Init”
« Master will synchronize the EtherCAT field bus
« Asynchronous communication between Master and Slave (Mailbox) will be
Init established. At this time, no direct communication (Master to/from Slave) will yet

take place.
* When all devices have been connected to the field bus and have successfully
passed configuration, state will be changed to “Pre-Operational’

Pre-Operational

» Asynchronous communication between Master and Slave (Mailbox) will be active.

« Master will setup cyclic communication via PDOs and necessary parameterization
via acyclic communication.

» Upon successful completion, the Master will change to state “Safe-

e Operational”.

Safe-Operational

» Used to establish a safe operation condition of all devices connected to the
EtherCAT field bus. Thereby, the Slave sends actual values to the Master while
ignoring new setpoint values of the Master and using save default values instead.

« Upon successful completion, the Master will change to state “Operational”

Operational

» Acyclic as well as cyclic communication is active
* Master and Slave exchange setpoint and actual values
« IDX be enabled and operated via the CoE protocol

Bootstrap

* Only FoE is possible (Mailbox)
¢ Firmware download via FoE

Table 4-16 EtherCAT communication — ESM conditions

Transition

Status

IP

Start of acyclic communication (Mailbox)

Pl

Stop of acyclic communication (Mailbox)

PS

Start of cyclic communication (Process Data)
Slave sends actual values to Master
Slave ignores setpoint values by the Master and uses default values

SP

Stop of cyclic communication (Process Data)
Slave ceases to send actual values to the Master

SO

Slave evaluates actual setpoint values of the Master

(ON)

Slave ignores setpoint values from Master and uses internal default values

oP

Stop of cyclic communication (Process Data)
Slave ceases to send actual values to the Master
Master ceases to send actual values to the Slave

Sl

Stop of cyclic communication (Process Data)
Stop of acyclic communication (Mailbox)

Slave ceases to send actual values to the Master
Master ceases to send actual values to the Slave

Ol

Stop of cyclic communication (Process Data)
Stop of acyclic communication (Mailbox)

Slave ceases to send actual values to the Master
Master ceases to send actual values to the Slave

1B

Start Bootstrap Mode
Firmware download via FOE (Mailbox)

Bl

Reset device after successful firmware download

Table 4-17 EtherCAT communication — ESM transitions

IDX Communication Guide
CCMC | 2021-03 | rel9977

4-43

EtherCAT Communication
Integration of ESI Files

maxon

Parameter Address Bit Description
0x01: Init Request
0x02: Pre-Operational Request
Control 0x0120 3...0 0x03: Bootstrap Mode Request
0x04: Safe-Operational Request
0x08: Operational Request
0x00: No error acknowledgment
Error Acknowledge | 0x0120 4 0x01: Error acknowledgment at rising edge
Reserved 0x0120 7.5 —
Application-specific | 0x0120 15...8 —

Table 4-18 EtherCAT communication — ESM control register

4.3 Integration of ESI Files

SDOs are used to access the object dictionary. The corresponding interface is CoE. The IDX is described
with an XML file bearing the so-called ESI (EtherCAT Slave Information).

For in-detail description and examples on integration into the EtherCAT master environment see separate
document 2 «IDX Application Notes», chapter “EtherCAT Integration”.

4.4 Error Code Definition

For in detail information on error codes, device-specific errors, and error handling methodology see sepa-
rate document =»«IDX Firmware Specification», chapter “Error Handling”.

4-44

IDX Communication Guide
CCMC | 2021-03 | rel9977

maxon

5

1
2
K]

Gateway Communication (USB to CAN)

GATEWAY COMMUNICATION (USB TO CAN)

Using the gateway functionality, the master can access all other IDX devices connected to the CAN Bus via
the gateway device’s USB port. Even other CANopen devices (I/O modules) supporting the CANopen stan-
dard CiA 301 may be accessed.

Figure 5-40

CANopen SDO Tx

USB Master CANopen Master
USBTx 1 | 4 USBRx
A
IDX ID 1 EPOS4 ID 2 EPOS2 ID 3
Object Dictionary Object Dictionary Object Dictionary
CANopen SDO Rx

—3—
—_— 22— CAN bus

Gateway communication — Structure

Communication data are exchanged between USB master and the gateway using a maxon-specific USB

protocol.

Data between the gateway and the addressed device are exchanged using the CANopen SDO protocol
according to the CiA 301.

uUsB
[maxon-specific]

CANopen [SDO]

CANopen [SDO]

USB
[maxon-specific]

Table 5-19

USB Master
d
IDX ID 1, Gateway

IDX ID 1, Gateway
{
EPOS4 ID 2

EPOS4 ID 2
{
IDX ID 1, Gateway

IDX ID 1, Gateway
N5
USB Master

Command including the Node-ID is sent to the device working as
a gateway. The gateway decides whether to execute the
command or to translate and forward it to the CAN Bus.

Criteria:

Node-ID = 0 (Gateway) = Execute
Node-ID = DIP switch = Execute

else other Node-ID - Forward to CAN

The gateway is forwarding the command to the CAN network. The
USB command is translated to a CANopen SDO service.

The EPOS4 ID 2 is executing the command and sending the
corresponding CAN frame back to the gateway.

The gateway is receiving the CAN frame corresponding to the
SDO service. This CAN frame is translated back to the USB frame
and sent back to the USB master.

Gateway communication — Data exchange

IDX Communication Guide
CCMC | 2021-03 | rel9977

5-45

Gateway Communication (USB to CAN) maxo n

eepage intentionally left blankee

IDX Communication Guide
5-46 CCMC | 2021-03 | rel9977

m axon Communication Error Code Definition

6 COMMUNICATION ERROR CODE DEFINITION

The following abort codes (= errors) are defined by CANopen Communication Profile CiA 301 and in use by
the IDX. Codes greater then 0xOF00 0000 are manufacturer-specific (maxon specific).

0x0000 0000 No abort Communication successful
(USR0[0 Toggle error Toggle bit not alternated

0x0504 0000 SDO timeout SDO protocol timed out

0x0504 0001 Command unknown Command specifier unknown
(OQVS(0ZN00[0Z N CRC error CRC check failed

0x0601 0000 WAY=ISSNET (o] Unsupported access to an object

(0) O[S0k Mo0[0kBN \\/rite only error Read command to a write only object
0x0601 0002 Read only error Write command to a read only object

Subindex cannot be written, subindex 0 must

0x0601 0003 Subindex cannot be written P .
be “0” (zero) for write access

The object can not be accessed via complete

0x0601 0004 SDO complete access not supported
access

Last read or write command had wrong object

(0)0[[0ZA 000 Object does not exist error . :
index or subindex
PDO mapping error Object is not mappable to the PDO

Number and length of objects to be mapped
would exceed PDO length

0x0604 0042 PDO length error
() QOLZN0ZEM General parameter error General parameter incompatibility
0x0604 0047 General internal incompatibility error General internal incompatibility in device
0x0606 0000 Hardware error Access failed due to hardware error

Data type does not match, length or service

0x0607 0010 Service parameter error
parameter do not match

Data type does not match, length of service

Service parameter too short error
parameter too low

0x0609 0011 Subindex error Last read or write command had wrong object

subindex
(0OCN{0B Value range error Value range of parameter exceeded
(0)QVS[0[oNV[0[0[0 General error General error
()OLION 020l Transfer or store error Data cannot be transferred or stored

Data cannot be transferred or stored to

0x0800 0022 Wrong device state error o .
application because of present device state

0x0604 0
0x0607

Continued on next page.

IDX Communication Guide
CCMC | 2021-03 | rel9977 6-47

Communication Error Code Definition maxo n

Password error Password is incorrect
lllegal command error Command code is illegal (does not exist)
Wrong NMT state error Device is in wrong NMT state

Table 6-20 Communication errors

IDX Communication Guide
6-48 CCMC | 2021-03 | rel9977

maxon st of Figures

LIST OF FIGURES

Figure 1-1

Figure 2-2

Figure 2-3

Figure 2-4

Figure 2-5

Figure 2-6

Figure 2-7

Figure 2-8

Figure 3-9

Figure 3-10
Figure 3-11
Figure 3-12
Figure 3-13
Figure 3-14
Figure 3-15
Figure 3-16
Figure 3-17
Figure 3-18
Figure 3-19
Figure 3-20
Figure 3-21
Figure 3-22
Figure 3-23
Figure 3-24
Figure 3-25
Figure 3-26
Figure 3-27
Figure 3-28
Figure 3-29
Figure 3-30
Figure 3-31
Figure 3-32
Figure 3-33
Figure 3-34
Figure 3-35
Figure 3-36
Figure 3-37
Figure 3-38
Figure 4-39
Figure 5-40

DocumeNntation StrUCIUIEo e et e e e e e e e 3
USB communication — COMMANGS ottt ettt et e et e e et e e e e 12
USB communication — Sending a data frame to IDX 12
USB communication — Receiving a response data frame from IDX i, 12
USB communication — Frame StrUCIUIe o e e e e e e 13
USB communication — CRC algorithm 14
USB communication — Slave State Machine. e 16
USB communication — Command instruction (example). 17
CAN communication — Protocol layer interactions e 23
CAN communication — 1ISO 11898 basic network Setup oo 23
CAN communication — CAN data frame e 24
CAN communication — Standard frame format e 24
CAN communication — Process Data Object (PDO)ot e e 26
CAN communication — PDO protocolot e e 27
CAN communication — PDO communication modes. i e 28
CAN communication — Service Data Object (SDO)ttt e e e e 29
CAN communication — Object diCtionary aCCEeSS.ttt e e e e 29
CAN communication — Synchronization object (SYNC) e e 30
CAN communication — Synchronous PDOt e 30
CAN communication — Emergency service (EMCY)ot e 31
CAN communication — Network management (NMT) e e 31
CAN communication — NMT Slave Statest 32
CAN communication — NMT ObjJecCt.o e 33
CAN communication — Default identifier allocation scheme i 34
LSS — Switch state global 36
LSS — Switch state Selective 36
LSS — Configure «Node-ID» e 37
LSS — Configure bit iming parameters 37
LSS — Activate bit timing parameters e 38
LSS — SWitCh delay e e e e 38
LSS — Store configuration protoCol e 38
LSS — Inquire identity «Vendor ID». 38
LSS — Inquire identity «Product COde» e 39
LSS — Inquire identity «RevViSion NUMDbDEr e e 39
LSS — Inquire identity «Serial nUmMber». e 39
LSS — Inquire identity «NOde-ID» e 39
LSS — Identify remote Slave e 40
LSS — Identify non-configured remote Slave e 40
EtherCAT communication — ESM SCheme e e 42
Gateway CommuNIiCation — StrUCIUIE e e e e 45

IDX Communication Guide
CCMC | 2021-03 | rel9977 Z-49

List of Tables

LIST OF TABLES
Table 1-1 Notations used in thisdocument
Table 1-2 Brand names and trademark OWners i
Table 1-3 Sources for additional information o
Table 2-4 USB communication — Timeouthandling
Table 3-5 CAN communication —Notations i
Table 3-6 CAN communication — Abbreviations. o
Table 3-7 CAN communication — TEerMS.o
Table 3-8 CAN communication — Object dictionary layout
Table 3-9 CAN communication — Object dictionary entry.
Table 3-10 CAN communication — Communicationobjects
Table 3-11 CAN communication — NMT slave (commands, transitions, and states)

Table 3-12 CAN communication — NMT protocols,
Table 3-13 CAN communication — Objects of the default connectionset.
Table 3-14 LSS commands — OVEIVIEWottt e e
Table 4-15 EtherCAT communication — Communication specifications.
Table 4-16 EtherCAT communication — ESM conditions
Table 4-17 EtherCAT communication — ESM transitions
Table 4-18 EtherCAT communication — ESM control register
Table 5-19 Gateway communication — Dataexchange
Table 6-20 COmMMUNICALION ITOIS . . . o ittt e ettt

maxon

Z-50

IDX Communication Guide
CCMC | 2021-03 | rel9977

maxon

INDEX

A

Access error (abort code) 47
access to CAN bus via USB 45

C

CAN

communication 21

error codes 47

gateway 45
CAN Client, Master, Server, Slave (definition) 22
CMS (definition) 21
COB, COB-ID (definition) 21
codes (used in this document) 4
Command unknown (abort code) 47
communication via gateway 45
CRC error (abort code) 47

E

EDS (definition) 21

error codes 47

ESl file 44

ESM (EtherCAT State Machine) 42

F

functions
read 7
write 9

G

General error (abort code) 47
General internal incompatibility error (abort code) 47
General parameter error (abort code) 47

H

Hardware error (abort code) 47

I

ID (definition) 21

lllegal command error (abort code) 48
InitiateSegmentedRead (function) 7
InitiateSegmentedWrite (function) 9

L

LSS (definition) 21

M

MAC (definition) 21

Index

N

No abort (abort code) 47
notations (used in this document) 4

O

Obiject (definition) 22

Object does not exist error (abort code) 47
OD (definition) 21

OSI Reference Model 23

P

Password error (abort code) 48
PDO (definition) 22

PDO length error (abort code) 47
PDO mapping error (abort code) 47
PLC (definition) 22

purpose of this document 3

R

Read only error (abort code) 47
ReadLSS (function) 11
ReadObject (function) 7
Receive (definition) 22

RO, RW, WO (definition) 22

S

SDO (definition) 22

SDO complete access not supported (abort code) 47
SDO timeout (abort code) 47

SegmentedWrite (function) 10

SegmentRead (function) 8

SendLSS(function) 11

Service parameter error (abort code) 47

Service parameter too short error (abort code) 47
Subindex cannot be written (abort code) 47
Subindex error (abort code) 47

T

Toggle error (abort code) 47
Transfer or store error (abort code) 47
Transmit (definition) 22

U

UsB
communication 7
gateway 45
physical layer 20

IDX Communication Guide
CCMC | 2021-03 | rel9977

Z-51

Index

Vv

Value range error (abort code) 47

W

Write only error (abort code) 47
WriteObiject (function) 9

Wrong device state error (abort code) 47
Wrong NMT state error (abort code) 48

maxon

Z-52

IDX Communication Guide
CCMC | 2021-03 | rel9977

maxon -

eepage intentionally left blankee

IDX Communication Guide
CCMC | 2021-03 | rel9977 Z-53

maxon

s
EtherCAT.

EtherCAT® is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany

This document is protected by copyright. Any further use (including reproduction, translation, microfilming, and other means of
electronic data processing) without prior written approval is not permitted. The mentioned trademarks belong to their respective
owners and are protected under intellectual property rights.

© 2021 maxon. All rights reserved. Subject to change without prior notice.

CCMC | IDX Communication Guide | Edition 2021-03 | DoclD rel9977

maxon motor ag
Brunigstrasse 220 +41 41 666 15 00
CH-6072 Sachseln WWWw.maxongroup.com

http://www.maxongroup.com/

	READ THIS FIRST
	Table of Contents
	1 About this Document
	1.1 Intended Purpose
	1.2 Target Audience
	1.3 How to use
	1.3.1 Trademarks and Brand Names

	1.4 Sources for additional Information
	1.5 Copyright

	2 USB Communication
	2.1 IDX USB Command Reference
	2.1.1 Read Functions
	2.1.1.1 ReadObject
	2.1.1.2 InitiateSegmentedRead
	2.1.1.3 SegmentRead

	2.1.2 Write Functions
	2.1.2.1 WriteObject
	2.1.2.2 InitiateSegmentedWrite
	2.1.2.3 SegmentWrite
	2.1.2.4 SendNMTService

	2.1.3 General CAN Commands
	2.1.3.1 SendLSS
	2.1.3.2 ReadLSS

	2.2 Data Link Layer
	2.2.1 Flow Control
	2.2.2 Frame Structure
	2.2.3 Cyclic Redundancy Check (CRC)
	2.2.3.1 CRC Calculation
	2.2.3.2 CRC Algorithm

	2.2.4 Byte Stuffing
	2.2.5 Transmission Byte Order
	2.2.6 Timeout Handling
	2.2.7 Slave State Machine
	2.2.8 Example: Command Instruction

	2.3 Physical Layer
	2.3.1 USB

	3 CAN Communication
	3.1 General Information
	3.1.1 Documentation
	3.1.2 Notations, Abbreviations and Terms used

	3.2 CANopen Basics
	3.2.1 Physical Layer
	3.2.2 Data Link Layer

	3.3 CANopen Application Layer
	3.3.1 Object Dictionary
	3.3.2 Communication Objects
	3.3.3 Predefined Communication Objects
	3.3.3.1 PDO Object
	3.3.3.2 SDO Object
	3.3.3.3 SYNC Object
	3.3.3.4 EMCY Object
	3.3.3.5 NMT Services

	3.4 Identifier Allocation Scheme
	3.5 Layer Setting Services (LSS)
	3.5.1 Overview
	3.5.2 LSS Commands
	3.5.2.1 Switch State Global
	3.5.2.2 Switch State Selective
	3.5.2.3 Configure «Node-ID»
	3.5.2.4 Configure Bit Timing Parameters
	3.5.2.5 Activate Bit Timing Parameters
	3.5.2.6 Store Configuration Protocol
	3.5.2.7 Inquire Identity «Vendor ID»
	3.5.2.8 Inquire Identity «Product code»
	3.5.2.9 Inquire Identity «Revision number»
	3.5.2.10 Inquire Identity «Serial number»
	3.5.2.11 Inquire Identity «Node-ID»
	3.5.2.12 Identify Remote Slave
	3.5.2.13 Identify non-configured Remote Slave

	4 EtherCAT Communication
	4.1 Communication Specifications
	4.2 EtherCAT State Machine (ESM)
	4.3 Integration of ESI Files
	4.4 Error Code Definition

	5 Gateway Communication (USB to CAN)
	6 Communication Error Code Definition
	List of Figures
	List of Tables
	Index

