

Formulae Handbook

maxon academy

 $k_n > k_{n, theor} = \left(\frac{n_{o, theor}}{U_{mot}} = \frac{n_{max} + \frac{\Delta n}{\Delta M}}{U_{mot}} M_{max} \right)$ $\alpha_{max} = \frac{M_{H}}{J_{R} + J_{L}} TL$ $mot = \frac{M_{H}}{M_{R}} + \frac{M_{M}}{K_{M}} + \frac{M_{N}}{M_{N}} \times \frac{M_{R}}{M_{N}} \times \frac{M_{R}}{M} \times \frac{M_{R}}{M} \times \frac{M_{R}}{M} \times \frac{M_{R}}{M} \times$ $\frac{1}{t_{tot}} (t_1 \cdot M_1^2 + t_2 \cdot M_2^2)$ M_{RMS} = $\Delta t = \frac{\pi E}{30} \cdot n_{L} \cdot \frac{J_{R} + J_{L}}{M} = \frac{\pi}{30} \cdot n_{L} \cdot \frac{J_{R} + J_{L}}{k_{M} \cdot l_{mot}}$ $M_{N} \geq M_{RMS} + n, theor = \overline{M}_{H} + \frac{N_{O}, theor}{U_{mot}} = \left(1 - \frac{M_{O}}{M_{max}}\right)$ ease M_N > M_{RMS} M_H > M_{max} ERATOR C $k_n > k_{n,theor} = \frac{n_{o,theor}}{U_{mot}} = \frac{n_{max} + 1}{1}$

Selection process

When performing a **system analysis**, the first step is to describe the drive as a whole in its environment. The objective is to obtain an **overview** of the system, to determine the theoretical feasibility of a solution and to get a picture of the boundary conditions and restrictions. **See Chap. A.1: Overview, system analysis**

The goal of "The goal of the Motion of the load" is to define the key requirements regarding forces (torques) and velocities (speeds of rotation). How long must they be applied? What is the required control accuracy? **See Chap. A.2: Motion of the load**

The mechanical drive design can be skipped if the load is driven directly and the drive system does not include a **mechanical drive**.

Mechanical drives transform mechanical power into mechanical power. For the selection of the drive the load key data are converted to the output of the motor or gearshaft. See Chap. 3 Mechanical drives.

The step for the **gearhead selection** can be skipped if no (maxon) gearhead is used. Gearheads are typically used whenever high torques are required at low speeds.

The purpose of this step is to determine if and which **maxon gearhead** can be used. The key data for the motor selection can then be calculated from the gearhead reduction and efficiency. **See Chap. 3.4: maxon gearhead**

On the basis of the torque and speed requirements, the next step is to select suitable **types of motors**. The useful life, commutation and bearing systems also have to be considered. **See Chap. 3.4: Motor selection**

The **selection of the winding** is made on the basis of a comparison of the applied motor voltage with the speed and a comparison of the available current with the torque requirements. **See Chap. 6.5: Motor selection**

The purpose of the last step is the **verification of the controller and sensor**, as well as a verification that the controller and sensor preselected in the situation analysis (Step 1) are compatible with the selected motor. **See Chap. A.3: Verification of controller and sensor**

Foreword

This Formulae Handbook lists the most important formulae in relation to all components of the drive system. It makes use of a flow chart that supports quick selection of the correct drive. Numerous illustrations and the clear descriptions of the symbols on the respective page help the reader to understand the formulae.

Roughly speaking, it is a collection of the most important formulae from the maxon catalog, as well as from the book "The selection of high-precision microdrives", published by maxon academy.

The initiative for writing this Formulae Handbook was the book "The selection of high-precision microdrives" by Dr. Urs Kafader, which contains extensive know-how from the success story of 50-years of maxon DC drives with low power (below approx. 500 W). The collection is intended for engineers, professors, lecturers and students, as a perfect supplement to the above mentioned book.

Thank you

Firstly I would like to thank Dr. Urs Kafader, who encouraged me to tackle this book. The professional layout and illustrations were done by Patricia Gabriel and Beni Anderhalden. Urs Kafader, Barbara Schlup, Anja Schütz, Patrik Gnos, Stefan Baumann, Martin Rüegg, Michael Baumgartner, Martin Windlin, Jens Schulze, Albert Bucheli, Martin Odermatt and Walter Schmid have read the manuscript and have given valuable suggestions for improvements. I also received extensive and ready support from many other people at maxon motor ag in response to my questions and requests for assistance.

Special thanks go to Susan Bechtiger, Paul Williams, Robin Philips, Anthony Mayr and Mark Casey who helped improve the translation from German into English.

Sachseln, Spring 2012 Jan Braun

5th Edition 2019 © 2019, maxon academy, Sachseln

This work is protected by copyright. All rights reserved, including but not limited to the rights to translation into foreign languages, reproduction, storage on electronic media, reprinting and public presentation. The use of proprietary names, common names etc. in this work does not mean that these names are not protected within the meaning of trademark law. All the information in this work, including but not limited to numerical data, applications, quantitative data etc. as well as advice and recommendations, has been carefully researched, although the accuracy of such information and the total absence of typographical errors cannot be guaranteed. The accuracy of the information provided must be verified by the user in each individual case. The author, the publisher and/or their agents may not be held liable for bodily injury or pecuniary or property damage.

Content

A. A.1 A.2 A.3	Drive selection Overview, system analysis Motion of the load Verification of controller and sensor	6 6 7 8
1. 1.1 1.2 1.3	Mass, force, torque Forces in general Torques in general Moments of inertia of various bodies with reference to the principal axes through the center of gravity S	9 9 11 12
2. 1 2.2 2.3 2.4	Kinematics Linear equations of motion Rotary equations of motion Typical linear motion profiles Typical rotary motion profiles	14 14 15 16 18
3. 3.1 3.2 3.3 3.4	Mechanical drives Mechanical transmission Mechanical drives, rotation → linear Mechanical drives, rotation → rotation maxon gear	21 22 25 26
4. 4.1	Bearing Comparison of characteristics of sintered sleeve bearings and ball bearings	27 27
5. 1 5.2 5.3 5.4	Electrical principles Principles of DC (Direct Current) Electrical resistive circuits Principles of AC (Alternating Current) Simple filters	29 29 31 33 34
6. 6.1 6.2 6.3 6.4 6.5	maxon motors General Power consideration DC motor Motor constants and diagrams Acceleration Motor selection	35 35 38 39 41 42
7.	maxon sensor	43
8. 8.1 8.2 8.3	maxon controller Operating quadrants Selection of power supply Size of the motor choke with PWM controllers	45 45 45 46
9. 9.1 9.2 9.3 9.4	Thermal behavior Basics Continuous operation Cyclic and intermittent operation (continuously repeated) Short-term operation	47 47 49 51 52
10. 10.1 10.2	Tablesmaxon Conversion TablesTypical coefficients of friction for rolling, static and kinetic friction	53 53 54
11.	Symbol list for the Formulae Handbook	56

A. Drive selection

A.1 Overview, system analysis

Before the actual selection process begins, a consideration with the drive system in its entirety is needed. The possible range of variations of the key parameters must also be determined. As a rule, all of these aspects are closely interlinked. The descriptions below are intended to help clarify these points and establish a framework for the further selection process.

Mechanical design

Is the intended motion linear or a rotary? What drive (screw, toothed belt, etc.) or what combination of drives are going to be used to achieve the desired motion? Is it a direct drive?

Define the control concept

What variables are to be controlled: current, speed, position? With what accuracy? Is an open-loop control system sufficient? How is the controlled variable measured? Where do the commands and set values come from? The answers to these questions will result in a preselection of possible controllers and sensors, i.e. for selection step 7 (see page 2).

Verify the power components

Is sufficient electric power available to drive the load under all operating conditions and to compensate for the expected losses in the drive train? What are the maximum voltage and current that will be available?

Determine the boundary conditions

Are there restrictions on size? In what environment (temperature, atmosphere etc.) is the drive required to operate? Is compliance with particular specifications or quality standards required? What is the specified useful life?

Cost considerations

Cost is always a key consideration. How can the drive be designed as economically as possible and still meet the requirements regarding performance and useful life?

For detailed information, refer to the book "The selection of high-precision microdrives", chapter 3.

A.2 Motion of the load

In the step for determining the **load requirements**, the motions to be executed must be defined. It is important to select appropriate motion profiles and to consider which operating times are to be expected.

For detailed information, refer to the book "The selection of high-precision microdrives", chapter 4.

maxon Formulae Handbook

A.3 Verification of controller and sensor

The **controller and sensor** verification involves checking whether the preselection made during the system analysis (selection step 1, see page 2) are compatible with the motor chosen. Detailed examination of the configuration of the control circuit allows to make definitive decisions regarding the suitable components (controller and sensor).

Motion controller

In higher-level drive systems, the motion controller is the central element. It is where all the threads come together. Thus, the controller must satisfy a wide range of requirements.

The controller must

- be able to control the manipulated variable with sufficient accuracy in a reasonable amount of time
- be able to process the information provided by the sensor
- understand the set values and commands of the higher-level system
- provide the required electric power
- be suited to the motor type (brushed or brushless) and the commutation

Sensor

The sensor (encoder, DC tacho or resolver) must be appropriate for the control task and comply with the other components. Additionally, the following further selection criteria apply.

The sensor has to

- be mountable on the motor according to the maxon modular system.
- measure the correct control variable (speed, position, direction of rotation) with sufficient resolution. Rule of thumb: The resolution of the sensor should be at least four times higher than the specified accuracy of the control variable.

For detailed information, refer to the book "The selection of high-precision microdrives", chapter 9.

Mass, force, torque Forces in general 1.

1.1

The force required to accelerate a mass of 1 kg by 1 m/s in 1 s has the unit kg \cdot m/s², with the special unit name Newton (N).

Typical component forces in a drive system						
m F _a	Force for acceleration = mass \cdot acceleration [<i>F</i>] = kg \cdot m/s ² = kgm/s ² = N	$F_a = m \cdot a = m \cdot \frac{\Delta v}{\Delta t}$				
m F _G	Gravitation (gravitational acceleration $g = 9.81 \text{ m/s}^2 = 9.81 \text{ N/kg} \approx 10 \text{ N/kg}$)	$F_{g} = m \cdot g$				
F _H a F _G F _N	Forces on the inclined plane: Downhill-slope force and normal force	$F_{H} = F_{G} \cdot \sin \alpha$ $F_{N} = F_{G} \cdot \cos \alpha$				
F _R	Friction force Sliding friction	$F_R = \mu \cdot F_N$				
	Spring force, compression and extension springs	$F_{\rm S} = k \cdot \Delta I$				
p F _p	Compressive force	$F_p = p \cdot A$				

Symbol	Name	SI	Symbol	Name	SI
A	Cross section	m ²	а	Acceleration	m/s ²
F	Force	N	g	Gravitational acceleration	m/s ²
Fa	Acceleration force	N	k	Spring constant	N/m
F _G	Weight of a body	N	т	Mass	kg
F _H	Downhill-slope force	N	р	Pressure (1 Pa = $1 \text{ N/m}^2 = 10^{-5} \text{ bar}$)	Pa
F_N	Normal force		α	Angle of the inclined plane	۰
	(force perpendicular to the plane)	N	ΔI	Displacement	m
Fp	Compressive force	N	∆t	Duration	S
Γ _R	Friction force	N	∆v	Velocity change	m/s
Fs	Spring force	N	μ	Coefficient of friction (see table Cha	p. 10.2)

Calculating the total load force consisting of component forces						
$F_{1} F_{2} F_{x}$	Addition of forces acting in the same direction	$F_L = F_1 + F_2 + \dots + F_X$				
F_{1} F_{L} F_{x} F_{z}	Addition of forces acting in opposite directions	$F_L = F_1 - F_2 - \dots - F_X$				
F ₁ F ₂	Addition of perpendicular forces	$F_{L} = \sqrt{F_{1}^{2} + F_{2}^{2}}$				

Symbol	Name	SI
F_L	Load force (output)	N
$F_{1}/F_{2}/F_{x}$, Partial forces	N

The torque is a measure of the rotational effect that a force exerts on a rotating system. It plays the same role for rotation that the force plays for linear motion. The equations always apply for a defined axis of rotation.

General		
F	Torque = force \cdot lever arm [M] = N \cdot m = Nm	$M = F \cdot r$
Typical component torques	in drive systems	
Torque for acceleration of me Torque = moment of inertia · (For information on calculatin see the next pages)	oments of inertia angular acceleration ng moments of inertia,	$M_{\alpha} = J \cdot \alpha = J \cdot \frac{\Delta \omega}{\Delta t}$ $M_{\alpha} = J \cdot \frac{\pi}{30} \cdot \frac{\Delta n}{\Delta t}$
	Friction of ball bearing and sintered sleeve bearing (simplified)	$M_{R} = \mu \cdot F_{KL} \cdot r_{KL}$
	Torque of spiral or leg springs	$M_{\rm S} = k_m \cdot \varDelta \varphi$
Calculating the load torque	consisting of component torques	
$ \begin{array}{c c} M_1 & M_2 & M_x \\ \hline & \bullet & \bullet \\ \hline & M_L \end{array} $	Addition of torques acting in same direction	$M_L = M_1 + M_2 + + M_X$
$ \qquad \qquad$	Addition of torques acting in opposite directions	$M_L = M_1 - M_2 - \dots - M_X$
Symbol Name	SI Symbol Name	SI
F Force	N r Radius	m

Symbol	Name	SI	Symbol	Name	SI
F	Force	N	r	Radius	m
F _{KL}	Bearing load, axial/radial	N	r _{KL}	Mean radius bearing	m
J	Moment of inertia	kgm ²	α	Angular acceleration	rad/s ²
М	Torque	Nm	∆t	Duration	S
M_{L}	Load torque	Nm	$\Delta \varphi$	Rotation angle change	rad
M_R	Friction torque	Nm	$\Delta \omega$	Angular velocity change	rad/s
Ms	Torque, spiral spring	Nm	μ	Coefficient of friction (see ta	able chapt. 10.2)
Ma	Torque for acceleration	Nm			
$M_1/M_2/M_x$	Partial torques	Nm	Symbol	Name	maxon
<i>k</i> _m	Torsion coefficient (spring constant)	Nm	⊿ n	Speed change	rpm

1.3 Moments of inertia of various bodies with reference to the principal axes through the center of gravity S

Body type	Illustration	Mass, moments of inertia
Circular cylinder, disc	r y s	$m = \rho \cdot \pi \cdot r^2 \cdot h$ $J_x = \frac{1}{2} \cdot m \cdot r^2$ $J_y = J_z = \frac{1}{12} \cdot m \cdot (3r^2 + h^2)$
Hollow cylinder	ra ra	$m = \rho \cdot \pi \cdot (r_a^2 - r_i^2) \cdot h$ $J_x = \frac{1}{2} \cdot m \cdot (r_a^2 + r_i^2)$ $J_y = J_z = \frac{1}{4} \cdot m \cdot (r_a^2 + r_i^2 + \frac{h^2}{3})$
Circular cone	N N N N N N N N N N N N N N N N N N N	$m = \frac{1}{3} \cdot \rho \cdot \pi \cdot r^2 \cdot h$ $J_x = \frac{3}{10} \cdot m \cdot r^2$ $J_y = J_z = \frac{3}{80} \cdot m \cdot (4r^2 + h^2)$
Truncated circular cone	r ₁ h	$m = \frac{1}{3} \cdot \rho \cdot \pi \cdot (r_2^2 + r_2 r_1 + r_1^2) \cdot h$ $J_x = \frac{3}{10} \cdot m \cdot \frac{r_2^5 - r_1^5}{r_2^3 - r_1^3}$
Circular torus	THE R	$m = 2\rho \cdot \pi^2 \cdot r^2 \cdot R$ $J_x = J_y = \frac{1}{8} \cdot m \cdot (4R^2 + 5r^2)$ $J_z = \frac{1}{4} \cdot m \cdot (4R^2 + 3r^2)$
Sphere	V S S	$m = \frac{4}{3} \cdot \rho \cdot \pi \cdot r^3$ $J_x = J_y = J_z = \frac{2}{5} \cdot m \cdot r^2$

Symbol	Name	SI	Symbol	Name	SI
J_x	Moment of inertia		h	Height	m
	with reference to the rotation axis x	kgm ²	m	Mass	kg
J_{v}	Moment of inertia		r	Radius	m
	with reference to the rotation axis y	kgm ²	ra	Outer radius	m
J_z	Moment of inertia		r	Inner radius	m
	with reference to the rotation axis z	kgm ²	<i>r</i> ₁	Radius 1	m
R	Radius circular torus around z-axis	m	r_2	Radius 2	m
			ρ	Density	kg/m ³

Body type	Illustration	Mass, moments of inertia
Hollow sphere	s s s s s s s s s s s s s s s s s s s	$m = \frac{4}{3} \cdot \rho \cdot \pi \cdot (r_a^3 - r_i^3)$ $J_x = J_y = J_z = \frac{2}{5} \cdot m \cdot \frac{r_a^5 - r_i^5}{r_a^3 - r_i^3}$
Cuboid		$m = \rho \cdot a \cdot b \cdot c$ $J_x = \frac{1}{12} \cdot m \cdot (b^2 + c^2)$
Thin rod	A V S X	$m = \rho \cdot A \cdot I$ $J_y = J_z = \frac{1}{12} \cdot m \cdot I^2$
Square pyramid	h h	$m = \frac{1}{3} \cdot \rho \cdot a \cdot b \cdot h$ $J_x = \frac{1}{20} \cdot m \cdot (a^2 + b^2)$ $J_y = \frac{1}{20} \cdot m \cdot (b^2 + \frac{3}{4}h^2)$
Arbitrary rotation body	z=f(x), z y y x x x x	$m = \rho \cdot \pi \cdot \int_{x_1}^{x_2} f^2(x) \cdot dx$ $J_x = \frac{1}{2} \cdot \rho \cdot \pi \cdot \int_{x_1}^{x_2} f^4(x) \cdot dx$
Steiner's theorem Moment of inertia with referen- ce to a parallel axis of rotation x at a distance of r_s to axis s through the center of gravity S.	Js S N X	$J_x = m \cdot r_s^2 + J_s$

Name	SI	Symbol	Name	SI
Cross section	m ²	с	Length of side c	m
Moment of inertia with reference		h	Height	m
to axis s through center of gravity S	kgm ²	1	Length	m
Moment of inertia		m	Mass	kg
with reference to the rotation axis x	kgm ²	ra	Outer radius	m
Moment of inertia		r	Inner radius	m
with reference to the rotation axis y	kgm ²	rs	Distance of axis s from	
Moment of inertia			center of gravity S	m
with reference to the rotation axis z	kgm ²	ρ	Density	kg/m ³
Length of side a	m	X ₁	Point 1 on the <i>x</i> -axis	m
Length of side b	m	X ₂	Point 2 on the <i>x</i> -axis	m
	Name Cross section Moment of inertia with reference to axis s through center of gravity S Moment of inertia with reference to the rotation axis x Moment of inertia with reference to the rotation axis z Woment of inertia with reference to the rotation axis z Length of side a Length of side b	Name SI Cross section m² Moment of inertia with reference to axis s through center of gravity S kgm² Moment of inertia with reference to the rotation axis x kgm² Woment of inertia with reference to the rotation axis y kgm² Moment of inertia with reference to the rotation axis y kgm² Woment of inertia m m Length of side a m m	NameSISymbolCross section m^2 c Moment of inertia with reference h to axis s through center of gravity Skgm²Moment of inertia m with reference to the rotation axis xkgm²Moment of inertia r_i with reference to the rotation axis ykgm²Moment of inertia r_s Moment of inertia r_s with reference to the rotation axis zkgm²Moment of inertia r_s with reference to the rotation axis zkgm²Length of side amLength of side bm	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

2. Kinematics

2.1 Linear equations of motion

Remark:

- The shaded areas represent the distance \varDelta s traveled during time period $\varDelta t$.

Symbol	Name	SI	Symbol	Name	maxon
t, ∆t	Time, duration	S	n, ∆n	Speed of rotation (change)	rpm
α	Angular acceleration	rad/s ²	n _{end}	Speed after acceleration	rpm
$\Delta \varphi$	Rotation angle change	rad	n _{start}	Speed before acceleration	rpm
$\omega, \Delta \omega$	Angular velocity (change)	rad/s			
ω_{end}	Angular velocity after acceleration	rad/s			
$\omega_{\rm start}$	Angular velocity before acceleration	rad/s			

Remarks:

- The shaded areas represent the angle of rotation $\Delta \varphi$ traveled during time period Δt .

- Angle of rotation $\Delta \varphi = 2\pi \operatorname{rad} \cdot \operatorname{Number}$ of revolutions = 360° $\cdot \operatorname{Number}$ of revolutions

Profile	General	Symmetrical
Suitability		Travel over long distance at limited velocity
Diagram	v_{max} Δs $\Delta t_a \Delta t_b \Delta t_c$	v_{max} Δs $\Delta t_a + \Delta t_b + \Delta t_a$ Δt_{tot}
Task:		
Travel a distance Δs in time Δt_{tot}	$v_{max} = \frac{\Delta S}{\Delta t_{tot} - \frac{\Delta t_a}{2}}$ $a_{max} = \frac{v_{max}}{\Delta t_a}$	$v_{max} = \frac{\Delta s}{(\Delta t_{tot} - \Delta t_a)}$ $a_{max} = \frac{\Delta s}{(\Delta t_{tot} - \Delta t_a) \cdot \Delta t_a}$
Travel a distance Δs at maximum velocity of v_{max}	$\Delta t_{tot} = \frac{\Delta s}{V_{max}} + \frac{\Delta t_a + \Delta t_c}{2}$ $a_{max} = \frac{V_{max}}{\Delta t_a}$	$\Delta t_{tot} = \frac{\Delta S}{V_{max}} + \Delta t_a$ $a_{max} = \frac{V_{max}}{\Delta t_a}$
Travel a distance Δs at maximum acceleration of a_{max}		$\Delta t_{tot} = \frac{\Delta s}{a_{max} \cdot \Delta t_a} + \Delta t_a$ $v_{max} = a_{max} \cdot \Delta t_a$
Complete motion in the time Δt_{tot} at maximum velocity v_{max}	$\Delta \mathbf{S} = \left(\frac{\Delta t_a + \Delta t_c}{2} + \Delta t_b\right) \cdot \mathbf{v}_{max}$ $a_{max} = \frac{\mathbf{v}_{max}}{\Delta t_a}$	$\Delta \mathbf{s} = (\Delta t_{tot} - \Delta t_a) \cdot \mathbf{v}_{max}$ $a_{max} = \frac{\mathbf{v}_{max}}{\Delta t_a}$
Complete motion in the time Δt_{tot} at maximum acceleration a_{max}		$\Delta \mathbf{s} = \mathbf{a}_{max} \cdot (\Delta t_{tot} - \Delta t_a) \cdot \Delta t_a$ $\mathbf{v}_{max} = \mathbf{a}_{max} \cdot \Delta t_a$
Motion at maximum velocity v_{max} and maximum acceleration a_{max}		

Symbol	Name	SI	Symbol	Name	SI
a _{max}	Maximum acceleration	m/s ²	Δt_a	Time a	S
V _{max}	Maximum velocity	m/s	Δt_{b}	Time b	S
⊿s	Distance change	m	Δt_c	Time c	S
	-		Δt_{tot}	Total time	S

3/3 Trapezoidal	Triangle
Optimized for minimum power (at given Δs and Δt): Most advantageous from a thermal point of view	Optimized for limited acceleration or force (at given Δs and Δt). Optimized for minimum time requirement (at given Δs and a_{max}).
	V _{max}

$v_{max} = 1.5 \cdot \frac{\Delta s}{\Delta t_{tot}}$ $a_{max} = 4.5 \cdot \frac{\Delta s}{\Delta t_{tot}^2}$	$v_{max} = 2 \cdot \frac{\Delta s}{\Delta t_{tot}}$ $a_{max} = 4 \cdot \frac{\Delta s}{\Delta t_{tot}^2}$
$\Delta t_{tot} = 1.5 \cdot \frac{\Delta s}{V_{max}}$ $a_{max} = 2 \cdot \frac{V_{max}^{2}}{\Delta s}$	$\Delta t_{tot} = 2 \cdot \frac{\Delta S}{V_{max}}$ $a_{max} = \frac{V_{max}^{2}}{\Delta S}$
$\Delta t_{tot} = \frac{3}{\sqrt{2}} \cdot \sqrt{\frac{\Delta s}{a_{max}}} \approx 2.12 \cdot \sqrt{\frac{\Delta s}{a_{max}}}$ $v_{max} = \frac{1}{\sqrt{2}} \cdot \sqrt{\Delta s \cdot a_{max}} \approx 0.7 \cdot \sqrt{\Delta s \cdot a_{max}}$	$\Delta t_{tot} = 2 \cdot \sqrt{\frac{\Delta s}{a_{max}}}$ $v_{max} = \sqrt{\Delta s \cdot a_{max}}$
$\Delta s = \frac{2}{3} \cdot \Delta t_{tot} \cdot v_{max}$ $a_{max} = 3 \cdot \frac{v_{max}}{\Delta t_{tot}}$	$\Delta s = \frac{1}{2} \cdot \Delta t_{tot} \cdot v_{max}$ $a_{max} = 2 \cdot \frac{v_{max}}{\Delta t_{tot}}$
$\Delta s = \frac{2}{9} \cdot a_{max} \cdot \Delta t_{tot}^{2} \approx 0.22 \cdot a_{max} \Delta t_{tot}^{2}$ $v_{max} = \frac{1}{3} \cdot a_{max} \cdot \Delta t_{tot} \approx 0.33 \cdot a_{max} \Delta t_{tot}$	$\Delta s = \frac{1}{4} \cdot a_{max} \cdot \Delta t_{tot}^{2}$ $v_{max} = \frac{1}{2} \cdot a_{max} \cdot \Delta t_{tot}$
$\Delta s = 2 \cdot \frac{V_{max}^{2}}{a_{max}}$ $\Delta t_{tot} = 3 \cdot \frac{V_{max}}{a_{max}}$	$\Delta s = \frac{V_{max}^2}{a_{max}}$ $\Delta t_{tot} = 2 \cdot \frac{V_{max}}{a_{max}}$

Symbol	Name	SI	Symbol	Name	SI
a _{max}	Maximum acceleration	m/s ²	⊿s	Distance change	m
V _{max}	Maximum velocity	m/s	Δt_{tot}	Total time	S

Profile	General	Symmetrical
Suitability		Long rotation at limited speed of rotation
Diagram	n_{max} $\Delta \phi$ Δt_{a} Δt_{b} Δt_{c}	n_{max} $\Delta \varphi$ Δt_a Δt_b Δt_a
Task:		
Travel an angle $\Delta \varphi$ in time Δt_{tot}	$n_{max} = \frac{30}{\pi} \cdot \frac{\Delta \varphi}{\Delta t_{tot} - \frac{\Delta t_a + \Delta t_c}{2}}$ $\alpha_{max} = \frac{\Delta \varphi}{\left(\Delta t_{tot} - \frac{\Delta t_a + \Delta t_c}{2}\right) \cdot \Delta t_a}$	$n_{max} = \frac{30}{\pi} \cdot \frac{\Delta \varphi}{(\Delta t_{tot} - \Delta t_a)}$ $\alpha_{max} = \frac{\Delta \varphi}{(\Delta t_{tot} - \Delta t_a) \cdot \Delta t_a}$
Travel an angle $\Delta \varphi$ at maximum speed n_{max}	$\Delta t_{tot} = \frac{30}{\pi} \cdot \frac{\Delta \varphi}{n_{max}} + \frac{\Delta t_a + \Delta t_c}{2}$ $\alpha_{max} = \frac{\pi}{30} \cdot \frac{n_{max}}{\Delta t_a}$	$\begin{split} \varDelta t_{tot} &= \frac{30}{\pi} \cdot \frac{\varDelta \varphi}{n_{max}} + \varDelta t_a \\ \alpha_{max} &= \frac{\pi}{30} \cdot \frac{n_{max}}{\varDelta t_a} \end{split}$
Travel an angle $\Delta \varphi$ at maximum angular acceleration a_{max}		$\Delta t_{tot} = \frac{\Delta \varphi}{\alpha_{max} \cdot \Delta t_a} + \Delta t_a$ $n_{max} = \frac{30}{\pi} \cdot \alpha_{max} \cdot \Delta t_a$
Complete motion in the time Δt_{tot} at maximum speed n_{max}	$\begin{split} \Delta \varphi &= \frac{\pi}{30} \cdot n_{max} \cdot \left(\frac{\Delta t_a + \Delta t_c}{2} + \Delta t_b \right) \\ \alpha_{max} &= \frac{\pi}{30} \cdot \frac{n_{max}}{\Delta t_a} \end{split}$	$\Delta \varphi = \frac{\pi}{30} \cdot n_{max} \cdot (\Delta t_{tot} - \Delta t_a)$ $\alpha_{max} = \frac{\pi}{30} \cdot \frac{n_{max}}{\Delta t_a}$
Complete motion in the time $\varDelta t_{tot}$ at maximum angular acceleration α_{max}		$\Delta \varphi = \alpha_{max} \cdot (\Delta t_{tot} - \Delta t_a) \cdot \Delta t_a$ $n_{max} = \frac{30}{\pi} \cdot \alpha_{max} \cdot \Delta t_a$
Motion at maximum speed n_{max} and maximum angular acceleration a_{max}		

Symbol	Name	SI	Symbol	Name	SI
a.max	Maximum angular acceleration	rad/s ²	$\Delta \varphi$	Rotation angle change	rad
∆t _a	Time a	S			
Δt_{b}	Time b	S	Symbol	Name	maxon
Δt_c	Time c	S	n _{max}	Maximum speed in load cycle	rpm
Δt_{tot}	Total time	S			

 Δt_{tot}

$n_{max} = 1.5 \cdot \frac{30}{\pi} \cdot \frac{\varDelta \varphi}{\varDelta t_{tot}}$	$n_{max} = 2 \cdot \frac{30}{\pi} \cdot \frac{\Delta \varphi}{\Delta t_{tot}}$
$\alpha_{max} = 4.5 \cdot \frac{\Delta \varphi}{\Delta t_{tot}^2}$	$\alpha_{max} = 4 \cdot \frac{\Delta \varphi}{\Delta t_{tot}^2}$
$\varDelta t_{tot} = 1.5 \cdot \frac{30}{\pi} \cdot \frac{\varDelta \varphi}{n_{max}}$	$\Delta t_{tot} = 2 \cdot \frac{30}{\pi} \cdot \frac{\Delta \varphi}{n_{max}}$
$\alpha_{\max} = 2 \cdot \frac{\pi^2}{30^2} \cdot \frac{n_{\max}^2}{\Delta \varphi}$	$\alpha_{\max} = \frac{\pi^2}{30^2} \cdot \frac{n_{\max}^2}{\Delta\varphi}$
$\Delta t_{tot} = \frac{3}{\sqrt{2}} \cdot \sqrt{\frac{\Delta \varphi}{\alpha_{max}}} \approx 2.12 \cdot \sqrt{\frac{\Delta \varphi}{\alpha_{max}}}$	$\Delta t_{tot} = 2 \cdot \sqrt{\frac{\Delta \varphi}{\alpha_{max}}}$
$n_{max} = \frac{1}{\sqrt{2}} \cdot \frac{30}{\pi} \cdot \sqrt{\Delta \varphi \cdot \alpha_{max}} \approx 6.75 \cdot \sqrt{\Delta \varphi \cdot \alpha_{max}}$	$n_{max} = \frac{30}{\pi} \sqrt{\Delta \varphi \cdot \alpha_{max}}$
$\varDelta \varphi = \frac{2}{3} \cdot \frac{\pi}{30} \cdot \varDelta t_{tot} \cdot n_{max}$	$\varDelta \varphi = \frac{1}{2} \cdot \frac{\pi}{30} \cdot \varDelta t_{tot} \cdot n_{max}$
$a_{max} = 3 \cdot \frac{\pi}{30} \cdot \frac{n_{max}}{\varDelta t_{tot}}$	$a_{max} = 2 \cdot \frac{\pi}{30} \cdot \frac{n_{max}}{\Delta t_{tot}}$
$\varDelta \varphi = \frac{2}{9} \cdot \alpha_{max} \cdot \varDelta t_{tot}^2 \approx 0.22 \cdot \alpha_{max} \cdot \varDelta t_{tot}^2$	$\varDelta \varphi = \frac{1}{4} \cdot \alpha_{max} \cdot \varDelta t_{tot}^{2}$
$n_{max} = \frac{1}{3} \cdot \frac{30}{\pi} \cdot \alpha_{max} \cdot \varDelta t_{tot} \approx 3.18 \cdot \alpha_{max} \cdot \varDelta t_{tot}$	$n_{max} = \frac{1}{2} \cdot \frac{30}{\pi} \cdot \alpha_{max} \cdot \varDelta t_{tot}$
$\varDelta \varphi = 2 \cdot \frac{30}{\pi} \cdot \frac{n_{max}^2}{\alpha_{max}}$	$\Delta \varphi = \frac{30}{\pi} \cdot \frac{n_{\max}^2}{a_{\max}}$
$\varDelta t_{tot} = 3 \cdot \frac{\pi}{30} \cdot \frac{n_{max}}{\alpha_{max}}$	$\varDelta t_{tot} = 2 \cdot \frac{\pi}{30} \cdot \frac{n_{max}}{\alpha_{max}}$

Symbol	Name	SI	Symbol	Name	maxon
a. _{max}	Maximum angular acceleration	rad/s ²	n _{max}	Maximum speed in load cycle	rpm
Δt_{tot}	Total time	S			
$\Delta \varphi$	Rotation angle change	rad			

 $-\Delta t_{tot}$

Notes

3. Mechanical drives

3.1 Mechanical transmission

Designations in the formulae

- The load-side variables at the output are identified by the index L.
- The input-side variables (usually the motor) are identified by the index in.

Symbol	Name	SI	Symbol	Name	SI
F	Force	N	VL	Load velocity	m/s
F_L	Load force (output)	N	η	Efficiency	
М	Torque	Nm	ω	Angular velocity	rad/s
Min	Input torque	Nm	ω_1	Angular velocity load	rad/s
ML	Load torque	Nm	ω_{in}	Angular velocity input	rad/s
P _{in.mech}	Mechanical input power	W			
P _{L.mech}	Mechanical output power	W	Symbol	Name	maxon
P _{mech}	Mechanical power	W	n	Speed of rotation	rpm
V	Velocity	m/s			

Screw drive					
Js	Speed of rotation	$n_{in} = \frac{60}{p} \cdot v_L$			
P	Torque	$M_{in} = \frac{p}{2\pi} \cdot \frac{F_{L}}{\eta}$			
•	Additional torque (speed change <i>dr</i>	for constant acceleration η_{in} during period Δt_a)			
	$M_{in,\alpha} = \left(J_{in} + J_{S} + \right)$	$\frac{m_{L}+m_{s}}{\eta}\cdot\frac{p^{2}}{4\pi^{2}}\cdot\frac{\pi}{30}\cdot\frac{\Delta n_{in}}{\Delta t_{a}}$			
	Play, position error	$\Delta \varphi_{in} = \Delta s_{L} \cdot \frac{2\pi}{p}$			
Belt drive/conveyor belt/c	rane				
M _B JJ	Speed of rotation	$n_{in} = \frac{60}{\pi} \cdot \frac{V_L}{d_1}$ (Assumption: no slip)			
	Torque	$M_{in} = \frac{d_1}{2} \cdot \frac{F_{\perp}}{\eta}$			
-2	Additional torque for constant acceleration (speed change Δn_{in} during period Δt_a)				
d ₁ J ₁	$M_{in,\alpha} = \left(J_{in} + J_1 + \frac{J_1}{2}\right)$	$\frac{J_2}{\eta} \cdot \frac{d_1^2}{d_2^2} + \frac{J_X}{\eta} \cdot \frac{d_1^2}{d_X^2} + \frac{m_L + m_B}{\eta} \cdot \frac{d_1^2}{4} \right) \cdot \frac{\pi}{30} \cdot \frac{\Delta n_{in}}{\Delta t_a}$			
ţ.	Play, position error	$\varDelta \varphi_{in} = \varDelta S_L \cdot \frac{2}{d_1}$			
SymbolName F_L Load force (output) J_{in} Moment of inertia, input	SI N	SymbolName m_L Mass of the load m_s Mass, screw nut $Oregoin = 1000 \text{ m}$	SI kg kg		

1		1.4		Mass of the load	ng i
J _{in}	Moment of inertia, input		ms	Mass, screw nut	kg
	(motor, encoder, brake)	kgm ²	р	Screw lead (pitch)	m
J_{s}	Moment of inertia, screw	kgm ²	VL	Load velocity	m/s
J_X	Moment of inertia, deflector pulley X	kgm ²	ΔS_L	Mechanical play, load	m
J_1	Moment of inertia, driving end	kgm ²	∆t _a	Acceleration time	S
J_2	Moment of inertia, deflector pulley 2	kgm ²	$\Delta \varphi_{in}$	Mechanical play, input	rad
M _{in}	Input torque	Nm	η	Efficiency	
$M_{in,a}$	Torque for acceleration	Nm			
dx	Diameter, deflector pulley X	m	Symbol	Name	maxon
d_1	Diameter, drive pulley	m	n _{in}	Input speed	rpm
d_2	Diameter, deflector pulley 2	m	⊿n _{in}	Speed change, input	rpm
m _B	Mass, belt	kg			

	Rack-a	nd-pinion drive					
		P m _z	Speed of rotation	$n_{in} = \frac{6}{p}$	$\frac{60}{\cdot z} \cdot V_L$		
			Torque	$M_{in} = \frac{K}{2}$	$\frac{D \cdot Z}{2\pi} \cdot \frac{F_L}{\eta}$		
			Additional torque (speed change <i>d</i>)	for cons n _{in} during	tant acce period⊿	eleration t _a)	
			$M_{in,\alpha} = \left(J_{in} + J_P + \right)$	$\frac{m_L + m_Z}{\eta}$	$\left(\frac{p^2\cdot z^2}{4\pi^2}\right)$	$\cdot \frac{\pi}{30} \cdot \frac{\Delta n_{in}}{\Delta t_a}$	
			Play, position error	$\Delta \varphi_{in} = \Delta$	$ds_L \cdot \frac{2\pi}{p \cdot z}$		
	Rover						
			Speed of rotation	$n_{in} = \frac{60}{\pi}$	$\frac{0}{d} \cdot \frac{v_L}{d}$	(Assumption: no slip)	
		m _F d	Torque	$M_{in} = \frac{Q}{2}$	$\frac{d}{2} \cdot \frac{F_L}{\eta}$		
		•	Additional torque (speed change <i>d</i>)	for cons n _{in} during	tant acce period⊿	eleration t_a)	
			$M_{in,\alpha} = \left(J_{in} + J_{W} + J_{W}\right)$	$\frac{m_L + m_p}{\eta}$	$\left(\frac{d^2}{4}\right) \cdot \frac{d^2}{3}$	$\frac{\pi}{30} \cdot \frac{\Delta n_{in}}{\Delta t_a}$	
			Play, position error	$\Delta \varphi_{in} = \Delta$	$ds_{L} \cdot \frac{2}{d}$		
	Symbol	Name	ci	Symbol	Name		CI
	F_L	Load force (output)	N	m _z	Mass, ge	ar rack	kg
	J _{in}	Moment of inertia, input	lt kam²	p V	Pitch	city	m/s
	J_P	Moment of inertia, pini	on kgm ²	Z Z	Number	of teeth, pinion	111/5
	J_w	Moment of inertia,	- 	⊿s _L	Mechanic	cal play, load	m
	Min	Input torque	кgm² Nm	Δt_a $\Delta \varphi_{in}$	Mechanic	cal play, input	s rad

Nm η

m

kg n_{in}

⊿n_{in}

kg Symbol Name

Efficiency

Input speed

Speed change, input

Mass, rover

Mass of the load

Torque for acceleration

Diameter, drive wheel

М_{in,a}

 m_F

 m_L

ď

maxon

rpm

rpm

Eccentric drive

Sinusoidal velocity curve of the load (assumption: constant input speed n_{in})

$$v_{L}(t) = \frac{\pi}{30} \cdot n_{in} \cdot e \cdot \sin\left(\frac{\pi}{30} \cdot n_{in} \cdot t\right)$$

Angle-dependent periodic acceleration force for load, pistons and rods (m_l)

$$F_{a}(\varphi) = F_{a} \cdot \cos \varphi = m_{L} \cdot \left(\frac{\pi}{30} \cdot n_{in}\right)^{2} \cdot e \cdot \cos \varphi$$

Angle-dependent torques due to different load conditions in the two half cycles of the back and forth motion.

$M_{in1}(\varphi) = \mathbf{e} \cdot (F_{L1} \cdot \sin \varphi + F_{a1} \cdot \cos \varphi)$	$0 \le \varphi \le \pi$
$M_{in2}(\varphi) = \mathbf{e} \cdot (F_{L2} \cdot \sin \varphi + F_{a2} \cdot \cos \varphi)$	$\pi \le \varphi \le 2\pi$

Average effective torque load

$$M_{in,RMS} = \frac{e}{\sqrt{2} \cdot \eta} \cdot \sqrt{F_{L1}^{2} + F_{a1}^{2} + F_{L2}^{2} + F_{a2}^{2}}$$

Additional torque for acceleration of the eccentric disc (speed change Δn_{in} during period Δt_{a})

$$M_{in,\alpha} = \left(J_{in} + J_{E}\right) \cdot \frac{\pi}{30} \cdot \frac{\Delta n_{in}}{\Delta t_{a}}$$

Symbol	Name	SI	Symbol	Name	SI
F_{L1}	Load force 1 st half cycle	N	е	Eccentricity	m
F_{L2}	Load force 2 nd half cycle	N	mL	Mass of the load	kg
Fa	Acceleration force	N	$V_L(t)$	Sinusoidal velocity curve of the load	m/s
$F_a(\varphi)$	Periodic acceleration force as a		t	Time	S
	function of the angle of rotation	N	∆t _a	Acceleration time	S
F _{a1}	Acceleration force, 1 st /2 nd half cycle	N	φ	Rotation angle	rad
F _{a2}	Acceleration force, 1 st /2 nd half cycle	N	η	Efficiency	
Jin	Moment of inertia, input				
	(motor, encoder, brake)	kgm ²	Symbol	Name	maxon
J _E	Moment of inertia, eccentric disc	kgm ²	n _{in}	Input speed	rpm
M _{in,RMS}	RMS torque	Nm	⊿n _{in}	Speed change, input	rpm
M _{in.a}	Torque for acceleration	Nm			
$M_{in1}(\varphi)$	Torque, 1 st half cycle	Nm			
$M_{in2}(\varphi)$	Torque, 2 nd half cycle	Nm			

Gearhead						
i. I	Speed of rotation	$n_{in} = n_L \cdot i_G$	_			
	Torque	$M_{in} = \frac{M_L}{i_G \cdot \eta}$				
•	Additional torque for constant acceleration (speed change Δn_{in} during period Δt_a)					
	$M_{in,\alpha} = \left(J_{in} + J_1 + \frac{J_L + J_2}{i_G^2 \cdot \eta}\right) \cdot \frac{\pi}{30} \cdot \frac{\Delta n_{in}}{\Delta t_a} = \left(J_{in} + J_G + \frac{J_L}{i_G^2 \cdot \eta}\right)$					
z,	Play, position error	$\varDelta \varphi_{in} = \varDelta \varphi_L \cdot i_G$				
	Reduction ratio planetary gearhead	$i_G = \frac{Z_1 + Z_3}{Z_1}$				
Belt drive						
	Speed of rotation	$n_{in} = n_L \cdot \frac{d_2}{d_1}$ (Assumption: no slip)				
J ₂ d ₂	Torque	$M_{in} = \frac{d_1}{d_2} \cdot \frac{M_L}{\eta}$				
	Additional torque for constant acceleration (speed change Δn_{in} during period Δt_a)					
	$M_{in,\alpha} = \left(J_{in} + J_1 + \frac{J_1}{2} \right)$	$\frac{J_L + J_2}{\eta} \cdot \frac{d_1^2}{d_2^2} + \frac{J_x}{\eta} \cdot \frac{d_1^2}{d_x^2} + \frac{m_R \cdot d_1^2}{4 \cdot \eta} \cdot \frac{\pi}{30} \cdot \frac{\Delta n_{in}}{\Delta t_a}$				
	Play, position error	$\varDelta \varphi_{in} = \varDelta \varphi_{out} \cdot \frac{d_2}{d_1}$				
Symbol Name	SI	Symbol Name S	ł			
J_{in} Moment of inertia, inp	d kgm² ut	(catalog value) m _R Mass, belt kg	9			

kgm² z_1

kgm² Z_3

kgm²

kgm²

Nm

Nm

Nm

 Δt_a

 $\Delta \varphi_{in}$

 $\Delta \varphi_L$

Symbol Name

η

m n_{in}

m *n*_L

m ⊿n_{in}

Number of teeth, sun wheel

Acceleration time

Efficiency

Input speed

Load speed

Mechanical play, input

Mechanical play, load

Speed change, input

Number of teeth, internal gear

maxon Formulae Handbook

Input torque

Load torque

 $J_L \\ J_x \\ J_1 \\ J_2$

Min

 $M_{in,a}$

 M_{L}

 d_{χ}

 d_1

 d_2

(motor, encoder, brake)

Moment of inertia, load

Moment of inertia, load

Torque for acceleration

Diameter, drive pulley

Diameter, load pulley

Diameter, deflector pulley X

Moment of inertia, driving end

Moment of inertia, deflector pulley X kgm²

s

rad

rad

maxon

rpm

rpm

rpm

Operating ranges of gearheads

maxon-gearheads are designed for an operating life of at least 1000 hours at the given maximum continuous torque and maximum input speed ratings. Operation below these limits will significantly increase operating life. If the limits are exceeded, the useful life of the gearhead may be reduced.

Symbol	Name	SI	Symbol	Name n	naxon
M _{G,cont}	Max. continuous torque, gearhead (catalog value)	Nm	n _{G,max} n:	Maximum output speed gearhead Maximum input speed (catalog value)	rpm rpm
М _{G,max} i _G	Max. intermittent torque, gearhead (catalog value) Reduction ratio, gearhead (catalog value)	Nm ue)	· · m,max	······	. 1

4. Bearing

4.1 Comparison of characteristics of sintered sleeve bearings and ball bearings

	Sintered sleeve bearings	Ball bearings
	0	
Operating modes	 continuous operation 	 suitable for all types of operations especially for start-stop operations and low-speed applications
Speed range	 ideal above approx. 500 rpm (range for hydrodynamic lubrication) with special material pairing and lubrication even at lower speeds 	 up to several 10 000 rpm in special cases up to 100 000 rpm and higher (e.g. with ceramic balls)
Radial / axial load	 only small bearing loads 	 higher loads preloaded ball bearings permit axial loads up to the value of the preload.
Additional operating criteria	 typical in small DC motors up to approx. 30 mm diameter and in spur gearheads not suitable for rotating load not suitable for vacuum applications (outgassing) not suitable for low temperatures (< -20°C) 	 typical in DC motors above 10 mm diameter and in planetary gearheads preloaded ball bearings typical in brushless DC motors guaranteeing a very long life and smooth operation
Bearing play	 axial: typically 0.05 0.15 mm radial: typically 0.014 mm 	 axial: typically 0.05 0.15 mm (no axial play if preloaded) radial: typically 0.025 mm
Coefficient of friction, typical	 0.001 0.01 (hydrodynamic lubrication) 	- 0.001 0.1
Lubrica- tion	 hydrodynamic lubrication only at high speeds shaft bearing material very important, pore size of the sintered bearing and viscosity of the lubricant at operating temperature are critical special: sintered iron bearings with ceramic shaft for high radial loads and long operating life 	 temperature range for standard lubrication: typically -20 100 °C special lubrication possible for very high or very low operating temperatures sealing possible (but higher friction, shorter life and lower speed limit)
Costs	economical	more expensive

Notes

5. Electrical principles

5.1 Principles of DC (Direct Current)

Symbol	Name	SI	Symbol	Name	SI
Î,	Current	A	Ri	Inner resistance, voltage source	Ω
Р	Power	W	R,	Load resistance	Ω
P _{max}	Maximum power	W	υ	Voltage	V
P_{v}	Power losses	W	U_{0}	Source voltage	V
R	Electrical resistance	Ω	U_{kl}	Terminal voltage	V

The electrical time constant describes the reaction time of the current when switching on or off a voltage.

 $[\tau_{el}] = \mathsf{H}/\Omega = \mathsf{Vs}/\mathsf{A}/\Omega = \mathsf{s} \\ [\tau_{el}] = \Omega \cdot \mathsf{F} = \Omega \cdot \mathsf{As}/\mathsf{V} = \mathsf{s}$

Pull-up: (relatively high-impedance) resistor
Connects signal line with higher voltage potential

Pull-down: (relatively high-impedance) resistor
 Connects signal line with lower voltage potential

 Pulls the line up to the higher potential, if no external voltage actively pulls the line to a lower potential

Current change with inductive load $\tau_{el} = \frac{L}{P}$

Voltage change with capacitive load $\tau_{ol} = R \cdot C$

Pull-up/pull-down

Open-collector output

Open-collector output (OC):

- Output of an integrated circuit with a bipolar transistor with an open collector output.

 Pulls the line down to the lower potential, if no external voltage actively pulls the line to a higher potential

 Usually the outputs are used in combination with a pull-up resistor which raises the output voltage to a higher potential in the inactive state.

$$U_{out} = +V - (I_{out} \cdot R_u)$$

Hall sensors usually have an open-collector output without pull-up resistor. Therefore, it is integrated into the maxon controllers.

Symbol	Name	SI	Symbol	Name	SI
С	Capacitance	F	t	Time	S
I _{out}	Output current	A	Uin	Input voltage	V
L	Inductance	н	Uout	Output voltage	V
R	Electrical resistance	Ω	+V	Supply voltage	V
R_d	Pull-down resistance	Ω	τ_{el}	Electrical time constant	S
R _u	Pull-up resistance	Ω			

Symbol	Name	SI	Symbol	Name	SI
1	Total current	А	R_{1}, R_{2}	Partial resistances	Ω
I_1, I_2	Partial currents	А	U	Total voltage	V
R	Equivalent resistance	Ω	U_{1}, U_{2}	Partial voltages	V

···;, ···2			~		0
RL	Load resistance	Ω			
R _{mot}	Terminal resistance, motor (catalog value)	Ω	Symbol	Name	Value
R _x	Equivalent resistance of R_2 and R_L	Ω	α_{Cu}	Resistance coefficient, copper	0.0039 K ⁻¹

Alternating quantities				
	Frequency [f] = 1/s = Hz		$f = \frac{1}{T}$	
t	Angular frequenc: $[\omega] = 1/s = rad/s$	у	$\omega = 2\pi \cdot f$	
Ohm's law				
)z		$U = Z \cdot \underline{I}$ $\underline{I} = \frac{U}{Z}$ $\underline{Z} = \frac{U}{\underline{I}}$	
Resistances				
Reactance				
Х _L	Inductive:		$X_L = \omega \cdot L = 2\pi \cdot f \cdot L$	
~	Capacitive:		$X_c = \frac{1}{\omega \cdot C} = \frac{1}{2\pi \cdot f \cdot C}$	
Impedance (AC resistance)	Z = <u>Z</u>			
For series connection of <i>R</i> and <i>L</i> , or <i>R</i> and <i>C</i> $Z = \sqrt{R^2 + X^2}$				
Symbol Name	SI	Symbol	Name	SI
C Capacitance	F	X X	Stands for X_c or X_L Reactance capacitive	Ω
L Inductance	H	X_L	Reactance, inductive	Ω
T Period	S	∠ f	Frequency	Ηz
<u>U</u> Voltage	V	t ω	IIme Angular frequency	s rad/s

General

Cut-off frequency fc

$$f_c = \frac{1}{2\pi \cdot R \cdot C}$$
 or $f_c = \frac{R}{2\pi \cdot L}$

 $\cos\varphi = \frac{U_{out}}{U}$

Phase shift

Low-pass filters, integral element

Allow frequencies to pass virtually unaffected below their cut-off frequency f_{c} . Higher frequencies are dampened.

Applications: maxon controller inputs, commutation signal measurement of maxon motors.

High-pass filter, derivative element

Allow frequencies to pass virtually unaffected above their cut-off frequency f_c . Lower frequencies are dampened.

Symbol	Name	SI	Symbol	Name	SI
C	Capacitance	F	Uout	Output voltage	V
1	Current	Α	U_R	Voltage over resistance	V
L	Inductance	Н	X _c	Reactance, capacitive	Ω
R	Electrical resistance	Ω	XL	Reactance, inductive	Ω
U_c	Voltage over capacitance	V	f	Frequency	Hz
Uin	Input voltage	V	f _c	Cut-off frequency	Hz
U_{L}	Voltage over inductance	V	φ	Phase shift	0

6. maxon motors

6.1 General

What is special about maxon motors?

The heart of the maxon motor is the self-supporting ironless copper winding.

Outstanding features of the maxon DC motors:

- High efficiency → Low power consumption
- Very low moment of inertia → Highest acceleration
- Low inductance → Long service life
- Compact design → Good volume / power ratio
- No magnetic cogging
- Low electromagnetic interference
- High reliability

maxon DC motor (brushed permanent-magnet energized DC motors)

DCX range

- Online configurable
- High performance thanks to NdFeB-Magnet
- Dynamic and high efficiency

DC-max range

- Online configurable
- High performance at low costs
- Combines design of the A-max motors with NdFeB magnets
- Automated manufacturing process

RE range

- High power density
- High-quality DC motor with NdFeB magnet
- High speeds and torques
- Robust design (metal flange)

A-max range

- Good price/performance ratio
- DC motor with AlNiCo magnet
- Automated manufacturing process

Properties of the two brush systems

Graphite brushes

 Well suited for high currents and peak currents

- Well suited for start-stop and reverse operation
- Larger motors (from approx. 10 W)
- Higher friction, higher no-load current
- Not suited for low currents
- Higher audible noise
- Higher electromagnetic emissions
- More complex and higher costs

Precious metal brushes

 Well suited for lowest currents and voltages
 Well suited for continuous operation

Ø6-35 mm

Ø16-26 mm

Ø6 -65 mm

Ø12-32 mm

- Smaller motors
- Very low friction, low audible noise
- Low electromagnetic emissions
- Cost effective
- Not suited for high currents and peak currents
- Not suited for start-stop operation

maxon EC motor

Brushless DC motors (BLDC motors)

- Motor behavior similar to brushed DC motor
- Design similar to synchronous motor (3-phase stator winding, rotating permanent magnet)
- Powering of the 3 phases according to the rotor position by a commutation electronics

ECX range - Online configurable Ø6-22 mm Power-optimized, with high speeds up to 120 000 rpm Robust design - Various types: e.g. short-long, sterilizable EC range - Power-optimized, with high speeds up to 100000 rpm - Robust design Ø4-60 mm - Various types: e.g. short-long, sterilizable Lowest residual imbalance **EC-max range** - Attractive price/performance ratio Robust steel housing Ø16–40 mm Speeds up to 20000 rpm - Rotor with one pole pair **EC-4pole range** - Highest power density thanks to 4-pole rotor Ø22-32 mm Speeds up to 25000 rpm Mechanical time constants below 3 ms. EC flat motor range - Attractive price / performance ratio - High torgues due to external, multipole rotor Ø9.2-90 mm - Excellent heat dissipation at higher speeds, resulting from the to open design - Speeds of up to 25000 rpm EC-i range - Highly dynamic due to internal, multipole rotor Mechanical time constants below 3 ms Ø30-52 mm - High torgue density - Speeds of up to 15000 rpm EC frameless range - High torgue grace to multi-pole motor design - Installation instructions with detailed specification for Ø45-90 mm optimum integration. - Sensor for supervising the temperature (NTC hot conductor) Space saving integration

The power curve is a parabola, whose maximum value is proportional to the square of the motor voltage.

Symbol	Name	SI	Symbol	Name	SI
Imot	Motor current	А	R _{mot}	Terminal resistance, moto	r
М	Torque	Nm		(catalog value)	Ω
M _H	Stall torque	Nm	U _{mot}	Motor voltage	V
Р	Power	W	U_N	Nominal voltage, motor (ca	atalog value) V
P _{el}	Electrical input power	W			
P_J	Joule power loss	W	Symbol	Name	maxon
P_L	Mechanical output power	W	n	Speed of rotation	rpm
			n _o	No load speed	rpm

M_H Torque M

Motor constants

The **speed constant** k_n and the **torque constant** k_M are two important characteristic values for the energy conversion.

Speed constant k_n The speed constant k_n combines the speed <i>n</i> with the voltage induced in the winding U_{ind} (=EMF).	$n = k_n \cdot U_{ind}$
Torque constant k_M The torque constant k_M links the produced torque M with the electrical current l .	$M = k_M \cdot I_{mot}$
Information: maxon unit mNm/A	
Dependence between k_n and k_M	$k_n \cdot k_M = \frac{30\ 000}{\pi} \left[\frac{\text{rpm}}{\text{V}} \cdot \frac{\text{mNm}}{\text{A}} \right]$ $= 1 \left[\frac{\text{rad}}{\text{s} \cdot \text{V}} \cdot \frac{\text{Nm}}{\text{A}} \right]$
Speed-torque line	
Describes the motor behavior – i.e. possible operating points (n, M) – at a constant voltage U_{mot} Speed n n_0 M_R M_H M_H Torque M I_0 M_{mot}	$n_{0} \approx k_{n} \cdot U_{mot}$ $M_{H} = k_{M} \cdot I_{A}$ $M_{R} = k_{M} \cdot I_{0}$ $n = k_{n} \cdot U_{mot} - \frac{\Delta n}{\Delta M} \cdot M$ (maxon units) Speed / torque gradient: $\frac{\Delta n}{\Delta M} = \frac{30\ 000}{\pi} \cdot \frac{R_{mot}}{k_{M}^{2}} \approx \frac{n_{0}}{M_{H}}$ (maxon units)
Symbol Name SI Symbol Nam Imat Motor current A Umat Motor	ne SI pr voltage V

Symbol	Name	SI	Symbol	Name	SI
I _{mot}	Motor current	Α	U _{mot}	Motor voltage	V
I _A	Starting current	A	U_N	Nominal voltage, motor (catalog	value) V
I _o	No load current	Α			
k _M	Torque constant (catalog value)	Nm/A	Symbol	Name	maxon
М	Torque	Nm	<i>k</i> _n	Speed constant (catalog value)	rpm/V
M _H	Stall torque	Nm	n	Speed of rotation	rpm
M_R	Friction torque	Nm	no	No load speed	rpm
R _{mot}	Terminal resistance, motor (catalog	value) Ω	$\Delta n / \Delta M$	Speed/torque gradient, motor	
U _{ind}	Induced voltage	V		(catalog value)	rpm/mNm

maxon Formulae Handbook

Symbol	Name	SI	Symbol	Name	SI
EMF	Electromotive force	V	U _{mot}	Motor voltage	V
I _o	No load current	A	di	Current change	A
I _A	Starting current	A	dt	Time change	s
I _{mot} , i _{mot}	Motor current	A	η	Efficiency	
k _M	Torque constant (catalog value)	Nm/A	η_{max}	Maximum efficiency at U_N (catal	og value)
L _{mot}	Terminal inductance, motor (catalog	g value) H			
Μ	Torque	Nm	Symbol	Name	maxon
M _H	Stall torque	Nm	k _n	Speed constant (catalog value)	rpm/V
M_R	Friction torque	Nm	n	Speed of rotation	rpm
R _{mot}	Terminal resistance, motor (catalog	value) Ω	no	No load speed	rpm
U_N	Nominal voltage, motor (catalog v	alue) V	$\Delta n / \Delta M$	Speed/torque gradient, motor	
U _{ind}	Induced voltage	V		(catalog value)	rpm/mNm

Motor type selection

Remark:

A motor type (e.g. DCX 32 L) is defined by: its size, the mechanical output power, the bearing system of the shaft, the commutation system used and the possible combinations with gearheads and sensors (maxon modular system)

Winding selection

For an optimum match between the electrical and mechanical power components of the motor.

 k_n specifies the winding: Select winding with

$$k_n > k_{n,theor} = \frac{n_{0,theor}}{U_{mot}} = \frac{n_{max} + \frac{\Delta n}{\Delta M} \cdot M_{max}}{U_{mot}}$$

(maxon units)

where n_{max} , M_{max} is the extreme operating point and $\Delta n / \Delta M$ the average speed/torque gradient of the selected motor type.

Recommendation: Add a safety factor of approx. 20% to k_n to compensate for tolerances and load changes; but do not select too large a value for k_n as this would lead to large currents.

Required maximum motor current			$I_{mot} = I_0 + \frac{M_{max}}{k_M}$			
Symbol	Name	SI	Symbol	Name	SI	
Imot	Motor current	A	t _{1 0}	Duration of operating points 1	7 S	
I ₀	No load current	Α	t _{tot}	Total time, operating cycle	S	
κ _M	Torque constant (catalog value)	Nm/A	101			
$M_{1\dots n}$	Torque at operating points 1n	Nm	Symbol	Name	maxon	
М	Torque	Nm	k _n	Speed constant (catalog value)	rpm/V	
M _H	Stall torque	Nm	k _{n.theor}	Required speed constant	rpm/V	
M_N	Nominal torque, motor (catalog value)	Nm	n	Speed of rotation	rpm	
M _{RMS}	RMS torque	Nm	n _{max}	Maximum speed in load cycle	rpm	
M _{max}	Maximum torque in load cycle	Nm	n _{0,theor}	Required no load speed	rpm	
n	Speed of rotation	rpm	$\Delta n / \Delta M$	Speed/torque gradient, motor		
U _{mot}	Motor voltage	V		(catalog value)	rpm/mNm	

7. maxon sensor

maxon incremental encoder								
	360°e				90°e			
channel A				r		r	-	
							_	
		_						
channel B							_	
				1 1	1			
signal edges								
(quadcounts)							_	
		I			I			
index channel I							_	
Recommended applicat	ions							
Principle		ma	gnetic		inductive	opt	ical	
Type						HEDS,		
	MR	EASY	QUAD	MEnc	MILE	HEDL, AEDL	RIO	ENC22
High number of counts	~	~	×	×	~	~	~	~
High speeds	~	V	~	~	~	×	~	×
Low speeds	~	~	×	×	~	~	~	~
Line driver (in the case								
of long cables, rough	~	~	x	x	~	V .X	~	x
ambient conditions,		Ť			Ť			
positioning applications,								
Low positioning								
accuracy or positioning	~	~	X , 🗸	~	~	~	~	~
with gearnead								
High positioning	X ,		~	~	4			
accuracy	~		^	^	•			•
Index channel			~	~	~			~
(for precision homing)	~	~	*	*	*		-	^
Dust, dirt, oil	1	×	v	~	~	×	V	×
Ionizing radiation	×	×	(🖌)	(🖌)	×	×	×	×
External magnetic fields	×	(🖌)	X	×	~	V	~	~
Mechanically robust	×	~	~	×	~	×	~	×
✓ Recommended	With	restriction	ons (🖌) Optio	onal (on red	quest) 🔀 Not	recom	nmended

Counts per turn from position resolution

Required counts per turn *N* of the encoder for a specified position resolution of $\Delta \varphi$ on the output of a backlash free mechanical drive.

$$N \geq \frac{360^\circ}{\varDelta \varphi \cdot i}$$

Remark: By evaluating the quadcounts (*qc*), a four times finer resolution is achieved. This is recommended for a sufficiently accurate positioning.

Measurement resolution, motor speed						
Example: Measurement resolution ΔQ : (given by the sample rate of the sp controller)	peed 1 qc/ms	$\Delta n = \frac{\Delta Q}{Q \cdot N}$ $\Delta n = \frac{\Delta Q}{Q \cdot N} = \frac{1 \frac{qc}{ms}}{1 \frac{qc}{ms}} = \frac{60000\frac{qc}{min}}{1 \frac{qc}{min}} = 30$	0 rpm			
Counts per turn <i>N</i> , encoder:	500 CPT	$2N = \frac{1}{Q \cdot N} = \frac{1}{4 \frac{qc}{CPT} \cdot 500 \text{ CPT}} = \frac{1}{2000 \text{ qc}} = 30$	Jipin			

Comment: The achievable speed stability is much higher than the above measurement resolution, due to the mass inertias and feed forward (if applicable).

Symbol	Name	SI	Symbol	Name	SI
N	Counts per turn	CPT	$\Delta \varphi$	Position resolution	٥
i	Reduction ratio, mechanical drive				
Q = 4	Quadcounts per pulse	qc/IMP	Symbol	Name	maxon
∆Q	Measurement resolution	qc/ms	⊿ n	Measurement resolution, motor spe	ed rpm

8. maxon controller

8.1 Operating quadrants

Operating quadrants

8.2 Selection of power supply

Required supply voltage at given load
$$(n_{\nu}, M_{\nu})$$

$$V_{cc} \ge \frac{U_{N}}{n_{o, \nu N}} \cdot \left(n_{L} + \frac{\Delta n}{\Delta M} \cdot M_{L}\right) + \Delta U_{max} \text{ (maxon units)}$$
Notes:

- In the case of a 4Q servo amplifier, the power supply has to be able to absorb the kinetic energy generated (for example in a capacitor) when the load is decelerated.
- When a stabilized power supply is used, the overcurrent protection has to be deactivated for the operating range.
- The formula includes the maximum voltage drop ΔU_{max} of the controller at maximum continuous current.

Achievable speed at given voltage supply

$$n_{L} \leq \left[(V_{cc} - \varDelta U_{max}) \cdot \frac{n_{0,UN}}{U_{N}} \right] - \left[\frac{\varDelta n}{\varDelta M} \cdot M_{L} \right] (\text{maxon units})$$

Symbol	Name	SI	Symbol	Name	maxon
Μ	Torque	Nm	n	Speed of rotation	rpm
M_{L}	Load torque	Nm	nL	Load speed	rpm
U_N	Nominal voltage, motor (catalog value)	V	n _{o,UN}	No load speed motor at U_N (catalog	g value) rpm
V _{cc}	Supply voltage	V	$\Delta n / \Delta M$	Speed/torque gradient, motor	
ΔU_{max}	Maximum voltage drop of the controlle	r V		(catalog value)	rpm/mNm

Calculation of current ripple							
PWM scheme	1-Q	2-level (4-Q)	3-level (4-Q)				
Maximum current ripple, peak-to-peak	$\Delta I_{PP,max} = \frac{V_{CC}}{4 \cdot L_{tot} \cdot f_{PWM}}$	$\Delta I_{PP,max} = \frac{V_{CC}}{2 \cdot L_{tot} \cdot f_{PWM}}$	$\Delta I_{PP,max} = \frac{V_{CC}}{4 \cdot L_{tot} \cdot f_{PWM}}$				
Calculation L _{tot}	$L_{tot} = L_{int} + 0.30.8 \cdot L_{mot} + L_{ext}$						

The effective motor inductance in the case of square PWM excitation only amounts to approx. 30–80% of the catalog value L_{mot} .

The catalog value L_{mot} is defined at a frequency of 1 kHz with sinusoidal excitation.

- At a current ripple of $\Delta I_{PP} \le 1.5 \cdot I_N$ the motor can still be loaded to approx. 90% of the nominal current I_N (catalog value).
- At a current ripple of $\Delta I_{PP} > 1.5 \cdot I_N$, it is recommended to use an external motor choke, in accordance with the formula below.

Calculation, additional external motor choke						
PWM scheme	1-Q and 3-level (4-Q)	2-level (4-Q)				
Rule of thumb	$L_{ext} = \frac{V_{CC}}{6 \cdot I_N \cdot f_{PWM}} - L_{int} - 0.3 \cdot L_{mot}$	$L_{ext} = \frac{V_{CC}}{3 \cdot I_N \cdot f_{PWM}} - L_{int} - 0.3 \cdot L_{mot}$				
$L_{ext} \le 0$ No add $L_{ext} > 0$ Addition	litional motor choke required onal motor choke recommended					

f _{PWM}	PWM frequency	Hz	L _{mot}	Terminal inductance, motor (catalog value)	Н
I_N	Nominal current, motor (catalog value)	Α	L _{tot}	Total inductance	Н
L _{ext}	Inductance, additional external		V _{cc}	Supply voltage	V
	motor choke	Н	ΔI_{PP}	Current ripple, peak-to-peak	А
L _{int}	Inductance, built-in choke controller	Н	$\Delta I_{PP,max}$	Maximum current ripple, peak-to-peak	А

9. Thermal behavior

9.1 Basics

Heat so	ources								
Iron los	ses in EC	Remagn	etization los	ses	S		Eddy current losses		
motors with iro	and motors n core winding	P _{V, magn} =	$\frac{\pi}{30} \cdot n \cdot M_{ma}$	gn			$P_{V,eddy} = const \cdot n^2$		
Joule power losses in winding						τ	$P_{J} = R_{TW} \cdot I_{mot}^{2}$ $R_{TW} = R_{mot} \cdot [1 + \alpha_{Cu} \cdot (T_{W} - 25^{\circ}\text{C})]$		
Friction	Friction losses: in the bearings and in the brushes (brushed DC motors)								
Losses in the gearhead					<mark>1-stage</mark> 3-stage 5-stage Torque M		$P_{VR} = \frac{\pi}{30} \cdot n_{mot} \cdot M_{mot} \cdot (1 - \eta_G)$ $P_{VR} = \frac{\pi}{30} \cdot n_L \cdot M_L \cdot \frac{1 - \eta_G}{\eta_G}$		
Stall torque reduced through temperature rise									
First ap winding (Tempe	First approximation; calculated from voltage and increased winding resistance (Temperature dependence of k_M not considered) $M_{HT} = k_M \cdot I_{AT} = k_M \cdot \frac{U_{mot}}{R_{TW}}$								
Storing	heat								
$Q = c \cdot r$	$m \cdot \varDelta T = C_{th} \cdot \varDelta T$		$Q = P_v \cdot t$						
Winding	$C_{th,W} = c_{Cu} \cdot m_W$		Stator: C _{th,S}	$m_{h,S} = c_{Fe} \cdot m_{mot}$			Gearhead: $C_{th,G} = c_{Fe} \cdot m_G$		
Symbol C_{th} $C_{th,G}$ $C_{th,S}$ $C_{th,W}$ c I_{AT} I_{mot} K_M M M $M_{G,cont}$ M_{HT}	Name Heat capacity get Heat capacity get Heat capacity get Heat capacity with Specific heat cap Starting current a Motor current Torque constant Torque Maximum contin (catalog value) Stall torque at ter Load torque	arhead ator nding pacity at temperat (catalog va uous torqu mperature	ی بر بر پ J/(kg ure <i>T_w</i> lue) Nm e, gearhead N <i>T_w</i> N	SI /K /K /K /K /K /A A /A m m m	$\begin{array}{l} \textbf{Symbol} \\ P_{V,magn} \\ P_{V,R} \\ Q \\ Q \\ R_{mot} \\ R_{TW} \\ T \\ T \\ W \\ t \\ U_{mot} \\ \Delta T \\ \eta \\ \eta_G \end{array}$	Nam Powe Fricti Store Term Wind Temp Wind Time Moto Temp Effici Gear	e SI er losses for reversal of magnetization W ion power losses W ed heat J inal resistance, motor (catalog value) Ω ling resistance at current temp. T_W Ω operature °C ling temperature °C or voltage V operature difference K lency Head efficiency		
M_L M_{magn} M_{mot} m_G m_{mot} m_W P_J P_V	$\begin{array}{llllllllllllllllllllllllllllllllllll$				Symbol n n_L n_{mot} Symbol α_{Cu} C_{Cu} C_{Fe}	Nam Spee Load Moto Nam Resis Spec	e maxon ed of rotation rpm l speed rpm or speed rpm e Value stance coefficient, copper 0.0039 K ¹ cific heat capacity copper 380 J/(kgK) ific heat capacity iron 450 – 470 J/(kgK)		

Thermal \rightarrow Heat flow Losses

Symbol Name Unit Symbol Name Unit Q Stored heat JQ Electric charge С Pv Power losses W = J/s ICurrent A = C/s $\Delta T_{W,\infty}$ Voltage, potential difference Temperature difference, winding-ambient K U_1 V $\Delta T_{S,\infty}$ Temperature difference, stator-ambient $K U_2$ Voltage, potential difference ٧ T_A R_{th1} Ground Ambient temperature °C(K) GND ٧ Therm. resistance, winding-housing R_1 Electrical resistance Ω (catalog value) K/W R_{th2} Therm. resistance, housing-ambient R_2 Electrical resistance Ω K/W (catalog value) $C_{th,W}$ Heat capacity, winding J/K C_1 Electrical capacitance F $C_{th,S}$ Heat capacity, stator J/K C₂ Electrical capacitance F

Current source

Heating of a simple body

Cooling of a simple body

Symbol	Name	SI	Symbol	Name	SI
T	Temperature	°C	t	Time	s
T_A	Ambient Temperature	°C	ΔT_{max}	Maximum temperature change	K
T _{end}	End temperature	°C	$\Delta T(t)$	Temperature change as a	
T _{start}	Temperature at start	°C		function of time t	K
T _{S.∞}	End temperature, stator	°C	τ_{th}	Thermal time constant	S
T _{W,∞}	End temperature, winding	°C			

9.2 Continuous operation

Continuous operation is characterized by a thermal equilibrium. After several motor time constants the temperature difference between the rotor and stator stays constant, as their temperatures do not increase further.

Symbol	Name	SI	Symbol	Name	SI
I _{mot}	Motor current	Α	T _{S,∞}	End temperature, stator	°C
P_{J}	Joule power losses	W	$T_{W,\infty}$	End temperature, winding	°C
$P_{V,G}$	Power losses, gearhead	W	t	Time	S
RTA	Winding resistance at temperature T_A	Ω	ΔT_{G}	Temperature difference, gearhead	-ambient K
R _{th,G}	Therm. resistance, gearhead-ambient	K/W	$\Delta T_{S,\infty}$	Temperature difference, stator-a	ambient K
R _{th1}	Therm. resistance, winding-housing		$\Delta T_{W,\infty}$	Temperature difference, winding	-ambient K
	(catalog value)	K/W	τ _M	Therm. time constant, motor (cata	og value) s
R _{th2}	Therm. resistance, housing-ambient		τ_W	Therm. time constant, winding	
	(catalog value)	K/W		(catalog value)	S
Т	Temperature	°C			
T_A	Ambient temperature	°C	Symbol	Name	Value
T _G	Gearhead temperature	°C	acu	Resistance coefficient, copper	0.0039 K ⁻¹

Permissible nominal current I_N

Dependency on ambient temperature under standard mounting conditions (free air convection at 25°C; mounted horizontally on plastic plate)

$$I_{N,TA} = I_N \cdot \sqrt{\frac{T_{max} - T_A}{T_{max} - 25^{\circ}C}}$$

Temperature-dependence under modified mounting conditions

$$I_{N,TA} = I_N \cdot \sqrt{\frac{T_{max} - T_A}{T_{max} - 25^{\circ} \text{C}}} \cdot \frac{R_{th1} + R_{th2}}{R_{th1} + R_{th2,mad}}$$

Determining R_{th2,mod}

Motor under original conditions

- Installation, fastening, air circulation

Separate measurement in continuous operation

- at any motor current I_{mot}
- Stator temperature T_{S_i} Ambient temperature T_A

$$R_{th2,mod} = \varDelta T_{s,\infty} \cdot \frac{1 - \alpha_{Cu} \cdot R_{th1} \cdot R_{TA} \cdot I_{mot}^{2}}{R_{TA} \cdot I_{mot}^{2} \cdot (1 + \alpha_{Cu} \cdot \varDelta T_{s,\infty})}$$

Symbol	Name	SI	Symbol	Name	SI
Imot	Motor current	Α	T _{max}	Max. winding temperature (catalog value)	°C
I_N	Nominal current, motor (catalog value)	Α	T _{s.∞}	End temperature, stator	°C
INTA	Nominal current as a function of T_A	Α	$T_{W,\infty}$	End temperature, winding	°C
M	Torque	Nm	$\Delta T_{S,\infty}$	Temperature difference,	
M_N	Nominal torque, motor (catalog value)	Nm		stator-ambient	K
P_{v}	Power losses	W			
R _{TA}	Winding resistance at temperature T_A	Ω	Symbol	Name ma	xon
R _{th1}	Therm. resistance, winding-housing		n	Speed of rotation	rpm
	(catalog value)	K/W	n _N	Nominal speed, motor (catalog value)	rpm
R _{th2}	Therm. resistance, housing-ambient		no	No load speed	rpm
	(catalog value)	K/W			
R _{th2,mod}	Therm. resistance,		Symbol	Name Va	alue
	housing-ambient modified	K/W	α _{Cu}	Resistance coefficient, copper 0.003	9 K-1
TA	Ambient temperature	°C			

9.3 Cyclic and intermittent operation (continuously repeated)

Repetitive work cycles of short duration (typically only a few seconds) can be assessed with the same formalism as continuous operation.

High, brief, one-time overload of the motor. The operation duration is so short that the temperature of the thermally inert stator does not increase significantly; this corresponds to an ON time of approx. $\tau_M / 10 \approx 5 \cdot \tau_W$.

10. Tables 10.1 maxon Conversion Tables

General Information

Quantities and their basic units in the International System of Units (SI)

Quantity	Base unit	Unit sign						
Length	Meter	m						
Mass	Kilogram	kg						
Time	Second	S						
Electric current	Ampere	А						
Thermodynamic temperature Kelvin K								
Conversion example A Known unit B Unit sought								

Known: oz-in	Multiply by 7.06	ought: mNm

Factors used for ...

	00	nu	OP	10	01	10'
•••	υu	117	CI	31	UI	13.

1 oz = 2.834952313 · 10⁻² kg $1 \text{ in } = 2.54 \cdot 10^{-2} \text{ m}$

... gravitational acceleration:

= 9.80665 m s⁻² g

= 386.08858 in s⁻²

... derived units:

 $\begin{array}{ll} 1 \ yd &= 3 \ ft = 36 \ in \\ 1 \ lb &= 16 \ oz = 7000 \ gr (grains) \\ 1 \ kp &= 1 \ kg \cdot 9.80665 \ ms^{-2} \end{array}$

- $1N = 1 \text{ kgms}^{-2}$ $1W = 1 \text{ Nms}^{-1} = 1 \text{ kgm}^2 \text{s}^{-3}$
- = 1 Nms⁻¹ = 1 Ws 1J

Decimal multiples and fractions of units

Prefix	Abbre- viation	Abbre- Power Pre		Abbre- viation	Power of ten
deca	da	10 ¹	deci	d	10-1
hecto	h	10 ²	centi	С	10-2
kilo	k	10 ³	milli	m	10-3
mega	М	10 ⁶	micro	m	10-6
giga	G	10 ⁹	nano	n	10-9
tera	Т	10 ¹²	pico	р	10-12

Power								<i>P</i> [W]
B A	oz-in-s-1	oz-in-rpm	in-lbf-s-1	ft-lbf-s-1	Nms ⁻¹ =W	mW	kpm s ⁻¹	mNmrpm
W=Nm s-1	$7.06\cdot10^{\scriptscriptstyle -3}$	1.17 · 10-4	0.113	1.356	-	1 · 10-3	9.807	¹ / ₆₀₀₀₀
mW	7.06	0.117	112.9	$1.356 \cdot 10^{3}$	1 · 103	-	9.807 · 103	¹ / ₆₀
oz-in-s-1	-	1/ ₆₀	16	192	141.6	0.142	$1.39\cdot10^{\scriptscriptstyle 3}$	$2.36 \cdot 10^{-3}$
ft-lbf-s-1	1/192	1/ ₁₁₅₂₀	1/ ₁₂	-	0.737	0.737 · 10-3	7.233	$1.23 \cdot 10^{-5}$
kpm s ⁻¹	$7.20\cdot10^{\text{-4}}$	1.2 · 10-5	$1.15 \cdot 10^{-2}$	0.138	0.102	$0.102 \cdot 10^{-3}$	-	$1.70\cdot10^{\text{-}6}$

Torque								<i>M</i> [Nm]
B A	oz-in	ft-lbf	Nm = Ws	Ncm	mNm	kpm	pcm	
Nm = W _s	7.06 · 10-3	1.356	-	1.10-2	1 · 10 ⁻³	9.807	9.807 · 10-5	
mNm	7.06	$1.356 \cdot 10^{3}$	1 · 103	10	-	9.807 · 103	9.807 · 10-2	
kpm	7.20 · 10-4	0.138	0.102	0.102 · 10-2	0.102 · 10-3	-	1.10-5	
oz-in	-	192	141.6	1.416	0.142	$1.39\cdot 10^{\scriptscriptstyle 3}$	$1.39\cdot10^{\text{-2}}$	
ft-lbf	¹ / ₁₉₂	-	0.737	0.737 . 10-2	0.737 · 10-3	7.233	7.233 · 10-5	

Moment of inertia J [kg m ²									
B A	oz-in ²	oz-in-s ²	lb-in ²	lb-in-s ²	Nms ² =kgm ²	mNm s ²	gcm ²	kpm s ²	
g cm ²	182.9	$7.06\cdot10^4$	$2.93\cdot 10^{\scriptscriptstyle 3}$	1.13 · 106	1.107	1.104	-	9.807 · 107	
kgm ² =Nms ²	1.83 · 10 - 5	7.06 · 10-3	$2.93 \cdot 10^{-4}$	0.113	-	1 · 10 ⁻³	1 · 10 ⁻⁷	9.807	
oz-in ²	-	386.08	16	$6.18\cdot10^{\scriptscriptstyle 3}$	5.46 · 104	54.6	5.46 · 10-3	$5.35\cdot10^{\scriptscriptstyle 5}$	
lb-in ²	1/ ₁₆	24.130	-	386.08	3.41 · 103	3.41	3.41 · 10-4	$3.35\cdot 10^4$	

Mass	ss m[kg							Force				
B A	0Z	lb	gr (grain)	kg	g	BA	0Z	lbf	Ν	kp	р	
kg	28.35.10-3	0.454	64.79.10-6	-	1.10-3	Ν	0.278	4.448	-	9.807	9.807 · 10-3	
g	28.35	0.454 ·103	64.79.10-3	1 · 103	-	kp	0.028	0.454	0.102	-	1 · 10 ⁻³	
0Z	-	16	2.28.10-3	35.27	35.27 · 103	0Z	-	16	3.600	35.27	35.27 · 10-3	
lb	¹ / ₁₆	-	1/ ₇₀₀₀	2.205	2.205.103	lbf	1/16	-	0.225	2.205	$2.205 \cdot 10^{-3}$	
gr (grain)	437.5	7000	-	15.43 · 103	15.43.106	pdl	2.011	32.17	7.233	70.93	70.93 · 10-3	

Length								/ [m]
B A	in	ft	yd	Mil	m	cm	mm	m
m	$25.4 \cdot 10^{-3}$	0.305	0.914	$25.4\cdot10^{.6}$	-	0.01	1.10-3	1.10-6
cm	2.54	30.5	91.4	$25.4\cdot10^{.4}$	1 · 10 ²	-	0.1	1 · 10-4
mm	25.4	305	914	$25.4\cdot10^{\text{-3}}$	1 · 103	10	-	1.10-3
in	-	12	36	1.10-3	39.37	0.394	$3.94 \cdot 10^{-2}$	$3.94\cdot10^{\scriptscriptstyle -5}$
ft	1/12	-	3	¹ / ₁₂ · 10 ⁻³	3.281	3.281 · 10-2	3.281 · 10-3	3.281 · 10-6

Angular velocity ω [s ⁻¹]				Angular acceleration α [s ⁻²]				
B A	s-1 = Hz	rpm	rad s ⁻¹	B A	min ⁻²	S ⁻²	rad s ⁻²	rpm s ⁻²
rad s-1	2p	P/30	-	\$ ⁻²	1/ ₃₆₀₀	-	1/ ₂₀	1/ ₆₀
rpm	1/ ₆₀	-	³⁰ /	rad s-2	P/ ₁₈₀₀	2p	-	P/30

Linear veloo	ity							<i>v</i> [m s⁻¹]
B A	in-s-1	in-rpm	ft-s-1	ft-rpm	m s-1	cm s ⁻¹	mm s-1	m rpm
m s-1	$2.54 \cdot 10^{-2}$	$4.23\cdot10^{.4}$	0.305	5.08 · 10-3	-	1.10-2	1.10-3	1/60
in-s-1	-	60	12	720	39.37	39.37 · 10-2	39.37 · 10-3	0.656
ft-s-1	1/12	5	-	60	3.281	3.281 · 10-2	3.281 · 10-3	5.46 . 10-2

Temperature	<i>T</i> [K]		
B A	° Fahrenheit	° Celsius	Kelvin
Kelvin	(°F -305.15)/1.8	°C + 273.15	-
° Celsius	(°F -32)/1.8	-	K -273.15
° Fahrenheit	-	1.8°C + 32	1.8 K + 305.15

Units used in the maxon catalog

maxon Formulae Handbook

Type of friction	Friction condition	Description
	Solid-to-solid friction (dry kinetic friction)	Direct contact between the friction partners
	Boundary friction (lubricated kinetic friction)	Special case of solid-to- solid friction with adsorbed lubricant on the surfaces
Kinetic friction	Mixed friction	Solid-to-solid friction and fluid friction combined next to each other
	Fluid friction	Friction partners are completely separated from each other by a film of fluid (produced hydrostatically or hydrodynamically)
	Gas friction	Friction partners are completely separated from each other by a gas film (produced aerostatically or aerodynamically)
Static friction		20 100% higher than kinetic friction
	Rolling friction	Bodies separated by lubricated roller bearings
Rolling friction	Combined rolling and sliding friction	Rolling friction with a kinetic component (slip)

Typical coefficient of friction	Examples	Coefficient of friction			
	Sintered bronze – Steel	0.15 0.3			
	Plastic – Gray cast iron	0.3 0.4			
	Steel – Steel	0.4 0.7			
0.1 1	Nitrided steel – Nitrided steel	0.3 0.4			
	Copper – Copper	0.6 1.0			
	Chromium – Chromium	0.41			
	Al alloy – Al alloy	0.15 0.6			
0.1 0.2	Steel – Steel	0.1			
	Sleeve bearing, lubricated, at low s	peeds of rotation			
0.01 0.1	Sintered bronze – Steel	0.05 0.1			
0.01 0.1	Sintered iron – Steel	0.07 0.1			
	Tempered steel – Tempered steel	0.05 0.08			
0.001 0.01	Sintered sleeve bearing, lubricated, at high speeds of rotation and low radial load				
0.0001					
	Steel – Steel dry	0.4 0.8			
	Steel - Steel lubricated	0.08 0.12			
0.1 1.2	Sintered bronze – Steel dry	0.2 0.4			
	Sintered bronze - Steel lubricated	0.12 0.14			
	Plastic – Gray cast iron, dry	0.3 0.5			
0.001 0.005	Ball bearings	0.001 0.0025			
0.001 0.1					

11. Symbol list for the Formulae Handbook

Name	Symbol	Unit	Page number
Acceleration	2	m/s ²	9 14
Acceleration force	E	N	0.24
Acceleration force 1st/2nd half cycle	, , E /E	N	24
Acceleration time	a1 a2	E C	27 23 24 25
Acceleration time	At	6	41
Ambient temperature	T	°C	48 49 50 51 52
Andle of the inclined plane	r _A	•	40, 49, 50, 51, 52
Angular acceleration	a	rad/s ²	11 15 41
Angular frequency	u m	rad/s	22
Angular velocity (Angular velocity (change)	w/w Aw/Aw	rad/s	11 15 21
Angular velocity / Angular velocity (change)	w /w	rad/s	15
Angular velocity input / load	end / costart	rad/s	21
Average end temperature winding	T	°C	51
Rearing load avial /radial	F	N	11
Capacitance	C KL	F	30 33 34
Coefficient of friction (see table chant 10.2)	"	1	0 11
Compressive force	F	N	0
Counts por turn CPT	N	IN .	14
Cross section	Δ	m ²	0.13
Current		٨	20 33 34 48 51
Current change	l di	A .	29, 33, 34, 40, 51
Current during ON phase	I	A .	51
Current ripple, peak to peak	I on	A .	16
Current through register P	21pp	A	20
Cut-off frequency	1 _{R2} f		34
Density	'C	kg/m ³	12 13
Diameter deflector pulley 2	p d	m	22
Diameter deflector pulley X	d	m	22
Diameter, denector pulley A	d d	m	22 25
Diameter, drive pulley	d d	m	22,25
Diameter load pulley	d	m	25
Displacement	4	m	0
Displacement Distance change	46	m	5 14 16 17
Distance of axis s from center of gravity S	213 r	m	12
Distance of axis s from center of gravity 5	r _s	N	0
Downinii-siope lorce	r _H	IN m	14
Duration	11 At	6	0 11
Duration of operating points 1 n	+	6	42
Eccentricity	1_n	m	24
Eddy current power losses	D	\M/	47
Efficiency	r Veddy	vv	21 22 23 24 25 40 47
Electric charge	0	C	48
Electrical capacitance	C/C	F	48
Electrical input power	P.	W	38
Electrical resistance	R/R./R.	0	29 30 33 34 48
Electrical time constant	τ.	S	30
Electromative force	EMK	V	40
End temperature	T	°C	48
End temperature stator/winding	To /Tw	°C	48 49 50 51 52
Equivalent resistance	R.	õ	31 32
Equivalent resistance of $R_{\rm e}$ and $R_{\rm e}$	R	0	32
Force	F	N	9 11 21
Frequency	f	Hz	33 34
Friction force	E	N	9
Friction power losses	Pure	W	47
Friction torque	Mo	Nm	11 39 40 41
Gearhead efficiency	n-		47
Gearhead temperature	T.	°C	49
Gravitational acceleration	a	m/s ²	9.14
Ground	GND	V	48
Heat capacity	C.,	J/K	47
Heat capacity gearhead/stator/winding	$C_{\rm m} \circ / C_{\rm m} \circ / C_{\rm m} w$	J/K	47.48
Height	h	m	12.13
Impedance	Z	Q	33
Induced voltage	Ū.,	V	39.40
Inductance	L	H	30, 33, 34
Inductance, additional external motor choke	L	Н	46
Inductance, built-in choke controller	Lint	Н	46
Inner radius	r,	m	12,13
Inner resistance, voltage source	R,	Ω	29
Input speed	n _{in}	rpm	22, 23, 24, 25
Input torque	Min	Nm	21, 22, 23, 25
Input voltage	Uin	V	30, 34
Joule power loss	P	W	38, 47, 49, 52
Length	1	m	13
Length of side a/b/c	a/b/c	m	13
Load current	I,	A	32
Load force (output)	Ē,	N	10, 21, 22, 23
Load force, 1st/2nd half cycle	F_{11}/F_{12}	N	24
Load resistance	R _i	Ω	29,32
Load speed	n,	rpm	25, 41, 45, 47
Load torque	M,	Nm	11, 21, 25, 41, 45, 47
Load velocity	V	m/s	21, 22, 23
Load voltage	Ú,	V	32

Name	Symbol	Unit	Page number
Mass	m	kg	9, 12, 13, 47
Mass, belt	m.	ka	22
Mass, belt	m.	ka	25
Mass, gear rack	<i>m</i> ₂	ka	23
Mass, gearhead	m _c	ka	47
Mass. motor	mmet	ka	47
Mass of the load	m,	ka	22, 23, 24
Mass. rover	me	ka	23
Mass, screw nut	m.	ka	22
Mass, winding	m.,	ka	47
Maximum acceleration	a	m/s ²	16.17
Maximum angular acceleration	a	rad/s ²	18 19 41
Maximum continuous torque, gearbead (catalog value)	M.	Nm	26.47
Maximum current ripple peak-to-peak	Al.	Δ	46
Maximum efficiency at U., (catalog value)	n pp,max		40
Maximum input speed (catalog value)	n.	rom	26
Maximum intermittent torque gearbead (catalog value)	M_	Nm	26
Maximum output speed gearbead	n-G,max	rom	26
Maximum power	P	W	29
Maximum speed in load cycle	n	rom	18 19 42
Maximum temperature change	AT	K	48
Maximum temperature change	A max	Nm	40
Maximum velocity	Wimax	m/c	16 17
Maximum velocity	v max	N S	45
Maximum voltage drop of the controller	ZIU _{max}	°C	40 50 51 52
Mean radius boaring	I max		11
Measurement resolution	10	ac/ms	11
Measurement resolution	10	qc/ms	44
Mechanical input power	D	W	21
Mechanical input power	Fin,mech	VV \A/	21 20
Mechanical output power	FL/PL,mech	rod	21,30
Mechanical play, Input	$\Delta \varphi_{in}$	rad	22, 23, 25
Mechanical play, load	$\Delta S_L / \Delta \varphi_L$	m/rad	22, 23, 25
Mechanical power	P _{mech}	VV	21
Mechanical time constant (catalog value)	τ _m	S	41
Mechanical time constant with additional J _L	τ _m	S	41
Moment of inertia	J	kgm ²	11
Moment of inertia with reference to the axis s through the center of gravity S	Js	kgm ²	13
Moment of inertia with reference to the rotation axis x	J_x	kgm ²	12,13
Moment of inertia with reference to the rotation axis y	J_{γ}	kgm ²	12,13
Moment of inertia with reference to the rotation axis z	J_z	kgm ²	12,13
Moment of inertia, all wheels together	J_w	kgm ²	23
Moment of inertia, deflector pulley 2/X	J_2/J_X	kgm ²	22, 25
Moment of inertia, driving end	J_1	kgm ²	22, 25
Moment of inertia, eccentric disc	J_E	kgm ²	24
Moment of inertia, gearhead transformed	J_{G}	kgm ²	25
Moment of inertia, input (motor, encoder, brake)	J _{in}	kgm ²	22, 23, 24, 25
Moment of inertia, load	J_L	kgm ²	25, 41
Moment of inertia, load	J_2	kgm ²	25
Moment of inertia, pinion	J_{P}	kgm ²	23
Moment of inertia, rotor (catalog value)	J_R	kgm ²	41
Moment of inertia, screw	Js	kgm ²	22
Motor current	I _{mot} / i _{mot}	A	38, 39, 40, 41, 42, 47, 49, 50, 52
Motor speed	n _{mot}	rpm	47
Motor torque	M _{mot}	Nm	47
Motor voltage	Umot	V	38, 39, 40, 42, 47
No load current	I _o	A	39, 40, 42
No load speed	n _o	rpm	38, 39, 40, 41, 50
No load speed of motor at U_N (catalog value)	n _{o.UN}	rpm	45
Nominal current as a function of T _A	INTA	A	50, 51
Nominal current, motor (catalog value)	IN	A	46, 50, 51, 52
Nominal speed, motor (catalog value)	n _N	rpm	50
Nominal torque, motor (catalog value)	M _N	Nm	42,50
Nominal voltage, motor (catalog value)	UN	V	38, 39, 40, 45
Normal force (force perpendicular to the surface of contact)	F _N	N	9
Number of teeth, internal gear/pinion/sun wheel	$Z_3/Z/Z_1$		23, 25
OFF time	t _{off}	S	51
ON time	t _{on}	s	51,52
Outer radius	r.,	m	12,13
Output current	Iout	Α	30
Output voltage	U	V	30.34
Overload factor	K		52
Partial currents	h. la	A	31
Partial forces	F1/F2/F.	N	10
Partial resistances	$R_{1}R_{2}$	Ω	31.32
Partial torques	$M_1/M_2/M_1$	Nm	11
Partial voltages	U_1, U_2	V	31.32
Period	T 7	s	33
Periodic acceleration force as a function of the angle of rotation	F(a)	N	24
Phase shift	(0)	0	34
Pitch	т П	m	23
Point 1/2 on the x-axis	×./x.	m	13
Position resolution	100	0	44
Potentiometer position	Σφ V	0.1	32
Power	P	01 W/	20.38
Power losses (power losses, dearboad	P / P	W/	29,30
r ower losses/power losses, gedniedd	r v / F VG	14/	47
r ower losses for reversal of magnetization	V.magn	**	41

maxon Formulae Handbook

Name	Symbol	Unit	Page number
Pressure (1 Pa = $1 \text{ N/m}^2 = 10^{-5} \text{ bar}$)	n	Pa	9
Pull-down resistance	R	0	30
Pull-up resistance	P	0	30
DWM frequency	f	17	46
Quadcounts per pulse	O = A	ac/IMP	40
Padius / Padius 1/ Padius 2	Q = 4	qc/IIVIF	11 12
Radius / Radius // Radius 2	D	m	10
Radius circulal torus around 2-dats	κ v	0	22.24
Reactance, capacitive	A _C	22	33, 34
Reactance, inductive	×L	22	33, 34
Reduction ratio, gearnead (catalog value)	I _G		25, 26
Reduction ratio, mechanical drive	1		44
Required no load speed	n _{0,theor}	rpm	42
Required speed constant	K _{n,theor}	rpm/V	42
Resistance coefficient, copper	α _{Cu}	0.0039 K ⁻¹	32, 47, 49, 50, 51, 52
Resistance, potentiometer	R ₀	Ω	32
RMS current	IRMS	A	51
RMS torque	M _{in,RMS} / M _{RMS}	Nm	24, 42
Rotation angle / rotation angle change	$\varphi I \Delta \varphi$	rad	11, 15, 18, 19, 24
Screw lead (pitch)	p	m	22
Sinusoidal velocity curve of the load	$V_i(t)$	m/s	24
Source voltage	U ₀	V	29
Specific heat capacity	C	J/(kaK)	47
Specific heat capacity conner	Co	380 J/(kgK)	47
Specific heat capacity iron	C-	450 - 470 1/(kgk)	47
Speed /torque gradient, motor (catalog value)	Ap/AM	rom/mNm	39 40 42 45
Speed after acceleration	n	rom	15
Speed aner acceleration	Tiend D	rpm	16
	11start	1pm	11
Speed change	ΔΠ 4.5	rpm	11
Speed change, input	∆n _{in}	rpm	22, 23, 24, 25
Speed constant (catalog value)	K _n	rpm/V	39, 40, 42
Speed of rotation/Speed of rotation (change)	n/n, ∆n	rpm	15, 21, 38, 39, 40, 41, 42, 45, 47, 50
Spring constant	k	N/m	9
Spring force	Fs	N	9
Stall torque	M _H	Nm	38, 39, 40, 41, 42
Stall torque at temperature T _W	M _{HT}	Nm	47
Stands for X _c or X _t	Х	Ω	33
Starting current	I_{Δ}	A	39,40
Starting current at temperature T _w	I _{AT}	A	47
Stored heat	Q	J	47,48
Supply voltage	+V	V	30
Supply voltage	Vac	V	45.46
Temperature	T	°C	47 48 49 51 52
Temperature at start	T	°C	48
Temperature change as a function of time t	AT(t)	ĸ	48
Temperature difference	AT (1)	K	40
Temperature difference gearboad_ambient	4 T	K	40
Temperature difference, geaneau-ambient	AT	K K	49 40 50 51
Temperature difference, stator-ambient	∠17 _{S,∞}	K	48, 49, 50, 51
Temperature difference, winding-ambient	⊿I _{W,∞}	n.	48, 49, 51, 52
Terminal inductance, motor (catalog value)	L _{mot}		40,46
Terminal resistance, motor (catalog value)	R _{mot}	\$2	32, 38, 39, 40, 41, 47
Terminal voltage	U_{kl}	V	29
Therm. resistance, gearhead-ambient	R _{th,G}	K/W	49
Therm. resistance, housing-ambient (catalog value)	R _{th2}	K/W	48, 49, 50, 51, 52
Therm. resistance, housing-ambient modified	R _{th2,mod}	K/W	50
Therm. resistance, winding-housing (catalog value)-	R _{th1}	K/W	48, 49, 50, 51, 52
Therm. time constant, motor/winding (catalog value)	τ_M / τ_W	S	49, 52
Thermal time constant	τ _{th}	S	48
Time/Time, duration	t/t, ∆t	S	14, 15, 24, 30, 33, 41, 47, 48, 49, 51, 52
Time a/b/c	$\Delta t_a / \Delta t_b / \Delta t_c$	S	16,18
Time change	dt	S	40
Torque	М	Nm	11, 21, 38, 39, 40, 41, 42, 45, 47, 50
Torque at operating points 1n	М	Nm	42
Torque constant (catalog value)	k.	Nm/A	39, 40, 41, 42, 47
Torque for acceleration	M. /Ma	Nm	11 22 23 24 25
Torque for reversal of magnetization	M	Nm	47
Torque 1st / 2nd half cycle	M_{magn} $M_{(a)}/M_{(a)}$	Nm	24
Torque, priral spring	M	Nm	11
Torgion coofficient (opring constant)	k s	Nm	11
Total ourrent	r _m	A	21 20
Total current	1	A	31, 32
Tetel Aime	Liot		40
Total time	∠IL _{tot}	5	10, 17, 10, 19
Total time, operating cycle	Ltot	S	42
Iotal voltage	0	v	31, 32
velocity / velocity (change)	VIV, AVI AV	m/s	9, 14, 21
Velocity after acceleration	Vend	m/s	14
Velocity before acceleration	V _{start}	m/s	14
Voltage	U	V	29, 33
Voltage over capacitance/inductance/resistance	$U_c/U_L/U_R$	V	34
Voltage, potential difference	U_{1}/U_{2}	V	48
Weight of a body	F _G	N	9
Winding resistance at current temperature T_w	R _{TW}	Ω	32, 47
Winding resistance at temperature T_4	RTA	Ω	49, 50, 51, 52
Winding temperature	Tw	°C	32.47
	**		

Precision Drive Systems